Asymptotic Analysis of the General Solution of a Linear Singularly Perturbed System of Higher-Order Differential Equations with Degenerations


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider a homogeneous system of linear singularly perturbed differential equations of order m with matrix at higher derivatives that becomes singular as the small parameter approaches zero. By using the Newton diagrams, we study the structure of the general solution of the analyzed system and the possibility of construction of its asymptotics in the case where the corresponding characteristic polynomial of the matrix has multiple finite and infinite elementary divisors. The obtained results generalize the results obtained for similar systems of equations of the first and second orders.

Авторлар туралы

S. Pafyk

Drahomanov National Pedagogic University

Email: Jade.Santos@springer.com
Украина, Pyrohov Str., 9, Kyiv, 01030

V. Yakovets’

University of Management of Education, Ukrainian National Academy of Pedagogical Sciences

Email: Jade.Santos@springer.com
Украина, Artem Str. 52-a, Kyiv, 01601

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media New York, 2016