On the Combinatorics of Smoothing
- Авторлар: Chrisman M.W.1
-
Мекемелер:
- Department of Mathematics, Monmouth University
- Шығарылым: Том 214, № 5 (2016)
- Беттер: 609-631
- Бөлім: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237479
- DOI: https://doi.org/10.1007/s10958-016-2802-5
- ID: 237479
Дәйексөз келтіру
Аннотация
Many invariants of knots rely upon smoothing the knot at its crossings. To compute them, it is necessary to know how to count the number of connected components the knot diagram is broken into after the smoothing. In this paper, it is shown how to use a modification of a theorem of Zulli together with a modification of the spectral theory of graphs to approach such problems systematically. We give an application to counting subdiagrams of pretzel knots which have one component after oriented and unoriented smoothings.
Негізгі сөздер
Авторлар туралы
M. Chrisman
Department of Mathematics, Monmouth University
Хат алмасуға жауапты Автор.
Email: mchrisma@monmouth.edu
АҚШ, West Long Branch, New Jersey
Қосымша файлдар
