Exact and Approximate Solutions of the Spectral Problems for the Differential Schrödinger Operator with Polynomial Potential in ℝK, K ≥ 2


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We consider spectral problems for the Schrödinger operator with polynomial potentials in ℝK, K ≥ 2. By using a functional-discrete (FD-)method and the Maple computer algebra system, we determine a series of exact least eigenvalues for the potentials of special form. In the case where the traditional FD-method is divergent (the degree of the polynomial potential exceeds 2 at least in one variable), we propose a modification of the method, which proves to be quite efficient for the class of problems under consideration. The obtained theoretical results are illustrated by numerical examples.

Авторлар туралы

V. Makarov

Institute of Mathematics, Ukrainian National Academy of Sciences

Хат алмасуға жауапты Автор.
Email: makarov@imath.kiev.ua
Украина, Tereshchenkivs’ka Str., 3, Kyiv, 01004

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019