On Minimal Entire Solutions of the One-Dimensional Difference Schrödinger Equation with the Potential υ(z) = e−2πiz
- Authors: Fedotov A.A.1
-
Affiliations:
- St.Petersburg State University
- Issue: Vol 238, No 5 (2019)
- Pages: 750-761
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/242597
- DOI: https://doi.org/10.1007/s10958-019-04272-3
- ID: 242597
Cite item
Abstract
Let z ∈ ℂ be a complex variable, and let h ∈ (0, 1) and p ∈ ℂ be parameters. For the equation ψ(z + h) + ψ(z − h) + e−2πizψ(z) = 2 cos(2πp)ψ(z), solutions having the minimal possible growth simultaneously as Im z → ∞ and as Im z → − ∞ are studied. In particular, it is shown that they satisfy one more difference equation ψ(z + 1) + ψ(z − 1) + e−2πiz/hψ(z) = 2 cos(2πp/h)ψ(z).
About the authors
A. A. Fedotov
St.Petersburg State University
Author for correspondence.
Email: a.fedotov@spbu.ru
Russian Federation, St. Petersburg
Supplementary files
