Weak Solutions of Hopf Type to 2D Maxwell Flows with Infinite Number of Relaxation Times


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A system of equations describing the motion of fluids of Maxwell type is considered:

\( \frac{\partial }{\partial t}\upsilon +\upsilon \cdot \nabla \upsilon -\underset{0}{\overset{t}{\int }}K\left(t-\tau \right) d\tau +\nabla p=f\left(x,t\right),\kern0.5em di\upsilon\;\upsilon =0. \)

Here K(t) is an exponential series \( K(t)=\sum \limits_{s=1}^{\infty }{\beta}_s{e}^{-{\alpha}_st} \). The existence of a weak solution for the initial boundary value problem

\( {\left.\begin{array}{ccc}\upsilon \left(x,0\right)={\upsilon}_0(x),& {\left.\upsilon \cdot n\right|}_{\partial \varOmega }=0,& rot\end{array}\;\upsilon \right|}_{\partial \varOmega }=0 \)

is proved.

About the authors

N. A. Karazeeva

St. Petersburg Department of the Steklov Mathematical Institute, RAS

Author for correspondence.
Email: karazeev@pdmi.ras.ru
Russian Federation, St. Petersburg

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Springer Science+Business Media, LLC, part of Springer Nature