The Normalizer of the Elementary Linear Group of a Module Arising when the Base Ring is Extended
- Authors: Nhat N.H.1, Hoi T.N.1
-
Affiliations:
- Vietnam National University
- Issue: Vol 234, No 2 (2018)
- Pages: 197-202
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/241809
- DOI: https://doi.org/10.1007/s10958-018-3996-5
- ID: 241809
Cite item
Abstract
Let S be a commutative ring with 1 and R a unital subring. Let M be a free S-module of rank n ≥ 3. In 1994, V. A. Koibaev described the normalizer of AutS(M) in the group AutR(M). In the present paper, it is proved that the normalizer of the elementary linear group E????(M) in AutR(M) coincides with that of AutS(M), namely, NAutR(M)(E????(M)) = Aut(S/R)⋉AutS(M). If S is free of rank m as an R-module, then NGL(mn,R)(E(n, S)) = Aut(S/R)⋉GL(n, S). Moreover, for any proper ideal A of R,
About the authors
N. H. T. Nhat
Vietnam National University
Author for correspondence.
Email: nhtnhat@hcmus.edu.vn
Viet Nam, Ho Chi Minh City
T. N. Hoi
Vietnam National University
Author for correspondence.
Email: tnhoi@hcmus.edu.vn
Viet Nam, Ho Chi Minh City
Supplementary files
