The Normalizer of the Elementary Linear Group of a Module Arising when the Base Ring is Extended


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let S be a commutative ring with 1 and R a unital subring. Let M be a free S-module of rank n ≥ 3. In 1994, V. A. Koibaev described the normalizer of AutS(M) in the group AutR(M). In the present paper, it is proved that the normalizer of the elementary linear group E????(M) in AutR(M) coincides with that of AutS(M), namely, NAutR(M)(E????(M)) = Aut(S/R)⋉AutS(M). If S is free of rank m as an R-module, then NGL(mn,R)(E(n, S)) = Aut(S/R)⋉GL(n, S). Moreover, for any proper ideal A of R,

\( {N}_{GL\left( mn,R\right)}\left(E\left(n,S\right)E\left( mn,R,A\right)\right)={\rho}_A^{-1}\left({N}_{GL\left( mn,R/A\right)}\left(E\left(n,S/ SA\right)\right)\right). \)

About the authors

N. H. T. Nhat

Vietnam National University

Author for correspondence.
Email: nhtnhat@hcmus.edu.vn
Viet Nam, Ho Chi Minh City

T. N. Hoi

Vietnam National University

Author for correspondence.
Email: tnhoi@hcmus.edu.vn
Viet Nam, Ho Chi Minh City

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Springer Science+Business Media, LLC, part of Springer Nature