Pseudocompactness, Products, and Topological Brandt λ0 -Extensions of Semitopological Monoids


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In the present paper, we study the preservation of pseudocompactness (resp., countable compactness, sequential compactness, ω -boundedness, totally countable compactness, countable pracompactness, sequential pseudocompactness) by Tychonoff products of pseudocompact (and countably compact) topological Brandt \( {\lambda}_i^0 \) -extensions of semitopological monoids with zero. In particular, we show that if \( \left\{\left({B}_{\uplambda_i}^0\left({S}_i\right),\kern0.5em {\uptau}_{B\left({S}_i\right)}^0\right):i\in \mathrm{\mathcal{I}}\right\} \) is a family of Hausdorff pseudocompact topological Brandt \( {\uplambda}_i^0 \) -extensions of pseudocompact semitopological monoids with zero such that the Tychonoff product \( \prod \left\{{S}_i:i\in \mathrm{\mathcal{I}}\right\} \) is a pseudocompact space, then the direct product \( \prod \left\{\left({B}_{\uplambda_i}^0\left({S}_i\right),\kern0.5em {\uptau}_{B\left({S}_i\right)}^0\right):i\in \mathrm{\mathcal{I}}\right\} \) endowed with the Tychonoff topology is a Hausdorff pseudocompact semitopological semigroup.

About the authors

O. V. Gutik

I. Franko National Lviv University

Email: Jade.Santos@springer.com
Ukraine, Lviv

O. V. Ravsky

Pidstryhach Institute for Applied Problems in Mechanics and Mathematics, Ukrainian National Academy of Sciences

Email: Jade.Santos@springer.com
Ukraine, Lviv

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Springer Science+Business Media New York