On the Mean Square of the Error Term For Dedekind Zeta Functions
- Authors: Fomenko O.M.1
-
Affiliations:
- St.Petersburg Department of the Steklov Mathematical Institute
- Issue: Vol 217, No 1 (2016)
- Pages: 125-137
- Section: Article
- URL: https://ogarev-online.ru/1072-3374/article/view/237994
- DOI: https://doi.org/10.1007/s10958-016-2961-4
- ID: 237994
Cite item
Abstract
Let Kn be a number field of degree n over ℚ. By D(x,Kn) denote the number of all nonzero integral ideals in Kn with norm ≤ x. The Dedekind zeta function ζKn(s) is a meromorphic function with a simple pole at s = 1 and with residue, say, Λn. Define
About the authors
O. M. Fomenko
St.Petersburg Department of the Steklov Mathematical Institute
Author for correspondence.
Email: fomenko@pdmi.ras.ru
Russian Federation, St.Petersburg
Supplementary files
