Manipulating Light in Coupled Asymmetric Nanostructures Induced by a Visible–NIR Laser
- 作者: Yang Y.1, Zhang L.2
-
隶属关系:
- Laboratory of All-Solid-State Light Sources Institute of Semiconductors, Chinese Academy of Sciences
- Research Institute of Petroleum Explorations and Development
- 期: 卷 39, 编号 3 (2018)
- 页面: 267-274
- 栏目: Article
- URL: https://ogarev-online.ru/1071-2836/article/view/248416
- DOI: https://doi.org/10.1007/s10946-018-9717-1
- ID: 248416
如何引用文章
详细
We design an asymmetric nanostructure in the longitudinal direction at the visible–NIR range, which enables high enhancement factor and has the properties of Fano resonance induced by a visible–NIR laser. By simulating and analyzing the resonance frequency spectra of various nanorods, nanodipoles, and combined nanoantennas, we optimize the resonant spectra and enhanced factor of such nanoantennas. It has broad-band resonant spectra with a FWHM from 800 to 1,100 nm and possesses two resonant peaks at 870 and 1,000 nm, with an enhancement factor of 24. The current density distribution in such nanoantennas with different phases is also simulated in order to investigate its resonant mode. This theoretical study paves the way towards nanoscale lightwave control and spectral splitting. The designed nanodevices provide great potential for applications in ultrasensitive color sorters and biosensors induced by visible–NIR lasers.
作者简介
Ying-Ying Yang
Laboratory of All-Solid-State Light Sources Institute of Semiconductors, Chinese Academy of Sciences
编辑信件的主要联系方式.
Email: yangyy@semi.ac.cn
中国, Beijing, 100083
Li-Xin Zhang
Research Institute of Petroleum Explorations and Development
编辑信件的主要联系方式.
Email: jude.zhang@petrochina.com.cn
中国, Beijing, 100083
补充文件
