Structure of the Room-Temperature 2.5 eV α-Quartz Single-Crystal Pulsed Cathodoluminescence Band
- Авторы: Andreev S.N.1, Kozlov V.A.1, Kutovoi S.A.2, Pestovskii N.V.1,3, Petrov A.A.1,3, Savinov S.Y.1,3, Zavartsev Y.D.2, Zavertyaev M.V.1, Zagumennyi A.I.2
-
Учреждения:
- Lebedev Physical Institute, Russian Academy of Sciences
- Prokhorov Institute of General Physics, Russian Academy of Sciences
- Moscow Institute of Physics and Technology (State University)
- Выпуск: Том 39, № 1 (2018)
- Страницы: 75-82
- Раздел: Article
- URL: https://ogarev-online.ru/1071-2836/article/view/248332
- DOI: https://doi.org/10.1007/s10946-018-9691-7
- ID: 248332
Цитировать
Аннотация
We study the room-temperature (RT) pulsed cathodoluminescence (PCL) spectrum of a high-purity synthetic α-quartz single crystal. The spectrum consists of two wide bands with intensity maxima at 415 and 490 nm (2.99 and 2.53 eV). The band at 490 nm (2.5 eV) is polarized in the XY crystal plane (perpendicular to the third-order symmetry axis) and possesses a structure with three peaks at 480±2, 487±2, and 493±2 nm (2.58±0.01, 2.55±0.01, and 2.52±0.01 eV). The intensities of the peaks at 480±2 and 493±2 nm increased with increase in the irradiation dose up to 45 kGy. Peaks are equidistant at the energetic scale. The energy separation between the peaks Δ = 0.03 ± 0.01 eV is equal in order of magnitude to energies of LixOy molecular vibrations and to the energy of the optical phonon in α-quartz. We propose an explanation of the experimental data obtained. According to this explanation, the structure observed may be attributed to the amplitude modulation of the quartz 2.5 eV emission band by the crystalline electric fields on frequencies of optical phonons. The nonequilibrium phonons may arise during the electron-beam irradiation.
Ключевые слова
Об авторах
S. Andreev
Lebedev Physical Institute, Russian Academy of Sciences
Email: pestovsky@phystech.edu
Россия, Leninskii Prospoect 53, Moscow, 119991
V. Kozlov
Lebedev Physical Institute, Russian Academy of Sciences
Email: pestovsky@phystech.edu
Россия, Leninskii Prospoect 53, Moscow, 119991
S. Kutovoi
Prokhorov Institute of General Physics, Russian Academy of Sciences
Email: pestovsky@phystech.edu
Россия, Vavilov Str. 38, Moscow, 119991
N. Pestovskii
Lebedev Physical Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)
Автор, ответственный за переписку.
Email: pestovsky@phystech.edu
Россия, Leninskii Prospoect 53, Moscow, 119991; Institutskii per. 9, Dolgoprudny, Moscow Region, 141700
A. Petrov
Lebedev Physical Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)
Email: pestovsky@phystech.edu
Россия, Leninskii Prospoect 53, Moscow, 119991; Institutskii per. 9, Dolgoprudny, Moscow Region, 141700
S. Savinov
Lebedev Physical Institute, Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)
Email: pestovsky@phystech.edu
Россия, Leninskii Prospoect 53, Moscow, 119991; Institutskii per. 9, Dolgoprudny, Moscow Region, 141700
Yu. Zavartsev
Prokhorov Institute of General Physics, Russian Academy of Sciences
Email: pestovsky@phystech.edu
Россия, Vavilov Str. 38, Moscow, 119991
M. Zavertyaev
Lebedev Physical Institute, Russian Academy of Sciences
Email: pestovsky@phystech.edu
Россия, Leninskii Prospoect 53, Moscow, 119991
A. Zagumennyi
Prokhorov Institute of General Physics, Russian Academy of Sciences
Email: pestovsky@phystech.edu
Россия, Vavilov Str. 38, Moscow, 119991
Дополнительные файлы
