Stable and Efficient Pulsed Mid-Infrared Laser Generation from an Er3+-Doped ZBLAN Fiber Laser
- Autores: Wu M.1, Liu J.1, Li Y.1, Tang P.2
-
Afiliações:
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education of China College of Optoelectronic Engineering, Shenzhen University
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices School of Physics and Optoelectronics, Xiangtan University
- Edição: Volume 39, Nº 2 (2018)
- Páginas: 177-181
- Seção: Article
- URL: https://ogarev-online.ru/1071-2836/article/view/248372
- DOI: https://doi.org/10.1007/s10946-018-9704-6
- ID: 248372
Citar
Resumo
We demonstrate a stable and efficient passively Q-switched 2.8 μm Er3+-doped ZBLAN fiber laser with a broadband semiconductor saturable absorber mirror. Enabled by the broadband optical modulator, the stable Q-switched fiber laser can deliver a maximum average power over 700 mW with corresponding per-pulse energy of 8.19 μJ and a pulse width of 1.3 μs at a repetition rate of 88.6 kHz under an incident pump power of 3.8 W. In addition, the slope efficiency can reach 22.5%. To the best of our knowledge, this is the highest reported slope efficiency for the passively Q-switched Er3+-doped ZBLAN fiber laser.
Palavras-chave
Sobre autores
Man Wu
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education of China College of Optoelectronic Engineering, Shenzhen University
Email: pinghuatang@xtu.edu.cn
República Popular da China, Shenzhen, 518060
Jun Liu
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education of China College of Optoelectronic Engineering, Shenzhen University
Email: pinghuatang@xtu.edu.cn
República Popular da China, Shenzhen, 518060
Yin Li
SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education of China College of Optoelectronic Engineering, Shenzhen University
Autor responsável pela correspondência
Email: queenly@szu.edu.cn
República Popular da China, Shenzhen, 518060
Pinghua Tang
Hunan Key Laboratory for Micro-Nano Energy Materials and Devices School of Physics and Optoelectronics, Xiangtan University
Autor responsável pela correspondência
Email: pinghuatang@xtu.edu.cn
República Popular da China, Xiangtan, 411105
Arquivos suplementares
