Online resources for the prediction of biological activity of organic compounds


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Online resources (PASS Online, SuperPred, SwissTargetPrediction and DRAR-CPI) for the prediction of biological activity of organic compounds from their structural formulas were considered. Based on a test set of drugs approved by 2014, the accuracies of predictions were compared. The four web resources can be arranged with respect to the quality of prediction (sensitivity, S) as follows: SwissTargetPrediction (S = 0.37) < DRAR-CPI (S = 0.41) < Super-Pred (S = 0.53) < PASS Online (S = 0.95). A conclusion was made that PASS Online employs superior machine learning algorithms based on MNA descriptors and Bayessian classifier in contrast to the similarity-based methods used in SuperPred and SwissTargetPrediction or the molecular docking methods used in DRAR-CPI. Possible reasons for the low prediction quality of SuperPred, SwissTargetPrediction, and DRAR-CPI are discussed and the development perspectives of this area of computational chemistry are given.

作者简介

D. Druzhilovskiy

V. N. Orehovich Institute of Biomedical Chemistry

编辑信件的主要联系方式.
Email: dmitry.druzhilovsky@ibmc.msk.ru
俄罗斯联邦, 10/8 ul. Pogodinskaya, Moscow, 119121

A. Rudik

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
俄罗斯联邦, 10/8 ul. Pogodinskaya, Moscow, 119121

D. Filimonov

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
俄罗斯联邦, 10/8 ul. Pogodinskaya, Moscow, 119121

A. Lagunin

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
俄罗斯联邦, 10/8 ul. Pogodinskaya, Moscow, 119121

T. Gloriozova

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
俄罗斯联邦, 10/8 ul. Pogodinskaya, Moscow, 119121

V. Poroikov

V. N. Orehovich Institute of Biomedical Chemistry

Email: dmitry.druzhilovsky@ibmc.msk.ru
俄罗斯联邦, 10/8 ul. Pogodinskaya, Moscow, 119121

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016