The Influence of Regimes of Thermomechanical Treatment on the Structural-Phase State, Mechanical Properties, and Fracture Toughness of Low-Alloy Steel API 5L Grade X52


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Possible improvement of mechanical properties and fracture toughness of low-alloy steel API 5L X52 after helical rolling under the conditions of cooling rate variations is analyzed. Upon helical rolling and air cooling (Regime I), the average ferrite grain size in this steel is observed to decrease from 13.5 μm in the initial state to 3.5 μm, the volume fraction of pearlite also decreases, the banded orientation disappears, and the structure becomes more homogeneous. The structural changes provide an increase in the yield stress value from 270 to 430 MPa and strength from 480 to 630 MPa, with the plasticity remaining at the initial level (ε = 25%). Simultaneously, the impact toughness value (KCV) increases in the entire temperature interval by about 30%, compared to that in the initial state, and the critical temperature of brittleness Т50 is shifted towards the region below –70°С. After rolling of low-alloy steel X52 and water quenching (Regime II), a ferrite-bainite structure is formed. Regime II favors an increase in the yield strength of the steel by a factor of 1.6, while the level of KCV slightly decreases.

作者简介

L. Derevyagina

Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: lsd@ispms.tsc.ru
俄罗斯联邦, Tomsk

A. Gordienko

Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences

Email: lsd@ispms.tsc.ru
俄罗斯联邦, Tomsk

P. Kashiro

National Research Tomsk Polytechnic University

Email: lsd@ispms.tsc.ru
俄罗斯联邦, Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2019