Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties
- 作者: Saroka V.A.1,2, Batrakov K.G.2
-
隶属关系:
- University of Exeter
- Research Institute for Nuclear Problems of the Belarusian State University
- 期: 卷 59, 编号 5 (2016)
- 页面: 633-639
- 栏目: Article
- URL: https://ogarev-online.ru/1064-8887/article/view/237227
- DOI: https://doi.org/10.1007/s11182-016-0816-6
- ID: 237227
如何引用文章
详细
The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.
作者简介
V. Saroka
University of Exeter; Research Institute for Nuclear Problems of the Belarusian State University
编辑信件的主要联系方式.
Email: v.saroka@exeter.ac.uk
英国, Exeter; Minsk
K. Batrakov
Research Institute for Nuclear Problems of the Belarusian State University
Email: v.saroka@exeter.ac.uk
白俄罗斯, Minsk
补充文件
