The Effect of Thermal Annealing on Structural-phase Changes in the Ni–Ti Alloy Implanted with Krypton Ions


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The influence of thermal annealing within the temperature range 100–300°C on the structural-phase state of a Ni–Ti alloy with shape memory effect (SME) implanted with 84Kr ions at the energies E = 280 keV and 1.75 MeV/nucl and the fluences within 5·1012–1·1020 ion/m2 is investigated. For the samples modified by 84Kr ions at E = 1.75 MeV/nucl up to the fluences 1·1020 and 5·1012 ion/m2, the formation of a martensitic NiTi phase with the B19 structure, responsible for the SME, is revealed at the annealing temperatures 100 and 300°C, respectively, in the near-surface region corresponding to the outrange area. This is accompanied by the formation of nanosized NiTi particles in the R-phase. As the implantation fluence increases, the probability of their formation decreases. It is shown that annealing of the implanted structures can increase the strength of the Ni–Ti alloy. The degree of hardening is determined by the value of annealing temperature, and an increase in strength is primarily due to ordering of the radiation-induced defect structures (phases). A correlation between the onset temperature of a forward martensitic transition and the structural-phase state of the thermally annealed Ni–Ti alloy is established.

作者简介

V. Poltavtseva

Institute of Nuclear Physics, Ministry of Power Engineering

编辑信件的主要联系方式.
Email: poltavtseva@inp.kz
哈萨克斯坦, Astana

S. Kislitsin

Institute of Nuclear Physics, Ministry of Power Engineering

Email: poltavtseva@inp.kz
哈萨克斯坦, Astana

S. Ghyngazov

Institute of Non-Destructive Testing at National Research Tomsk Polytechnic University

Email: poltavtseva@inp.kz
俄罗斯联邦, Tomsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016