Hamiltonian of the One-Dimensional Torsion Schrödinger Equation in a Complex-Valued Basis of Mathieu Functions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An analytical method for calculating the matrix elements of the Hamiltonian of the torsion Schrödinger equation in a basis of Mathieu functions is developed. The matrix elements are represented by integrals of the product of three Mathieu functions, and also the derivatives of these functions. Analytical expressions for the matrix elements are obtained by approximating the Mathieu functions by Fourier series and are products of the corresponding Fourier expansion coefficients. It is shown that replacing high-order Mathieu functions by one harmonic leads to insignificant errors in the calculation.

Авторлар туралы

A. Belov

Tver State University

Хат алмасуға жауапты Автор.
Email: abelov@tversu.ru
Ресей, Tver

V. Turovtsev

Tver State Medical University

Email: abelov@tversu.ru
Ресей, Tver

Yu. Orlov

Tver State University

Email: abelov@tversu.ru
Ресей, Tver

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, 2017