The Evolution of the Structure and Mechanical Properties of Aluminum During Accumulative Roll Bonding
- Авторлар: Ivanov K.V.1, Kudryavtsev E.V.2
-
Мекемелер:
- Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences
- Belgorod State National Research University
- Шығарылым: Том 60, № 1 (2017)
- Беттер: 163-169
- Бөлім: Article
- URL: https://ogarev-online.ru/1064-8887/article/view/237896
- DOI: https://doi.org/10.1007/s11182-017-1055-1
- ID: 237896
Дәйексөз келтіру
Аннотация
The dependence of microstructure, microhardness, and strength properties in tensile strain tests of commercially pure aluminum on strain during accumulative roll-bonding was studied. The methods of transmission electron microscopy and electron back scattered diffraction patterns analysis were used to establish that a lamellar ultrafine structure is formed in aluminum after accumulative roll bonding. It is shown that aluminum microhardness, ultimate strength, and yield strength increase monotonically with the degree of true logarithmic strain increasing from 3.2 to 8.0. The reasons for the difference in the structure and mechanical properties of the aluminum studied from the ones relevant for the aluminum deformed by equal-channel angular pressing are discussed.
Негізгі сөздер
Авторлар туралы
K. Ivanov
Institute of Strength Physics and Materials Science of the Siberian Branch of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: ikv@ispms.tsc.ru
Ресей, Tomsk
E. Kudryavtsev
Belgorod State National Research University
Хат алмасуға жауапты Автор.
Email: kudryavtsev@bsu.edu.ru
Ресей, Belgorod
Қосымша файлдар
