The Influence of Vacancy Concentration of Low-Stability Pre-Transitional Structural-Phase States and Energy Characteristics of NiAl Intermetallide
- Authors: Potekaev A.I.1,2, Chaplygina A.A.3, Chaplygin P.A.3, Starostenkov M.D.3, Kulagina V.V.2,4, Klopotov A.A.2,5, Grinkevich L.S.1
-
Affiliations:
- National Research Tomsk State University
- V. D. Kuznetsov Siberian Physical-Technical Institute
- I. I. Polzunov Altai State Technical University
- Siberian State Medical University
- Tomsk State Architecture and Building University
- Issue: Vol 62, No 1 (2019)
- Pages: 119-126
- Section: Condensed-State Physics
- URL: https://ogarev-online.ru/1064-8887/article/view/241481
- DOI: https://doi.org/10.1007/s11182-019-01691-2
- ID: 241481
Cite item
Abstract
Using the Monte Carlo method, the influence of vacancy concentration on the structural-phase states and energy characteristics is investigated by the example of an intermetallic compound NiAl in the course of its heating and cooling. According to the analysis, the availability and concentration of vacancies are important factors in the pre-transitional low-stability structural-phase states prior to transformation. On the one hand, neither the vacancies nor their concentration affect the temperature ranges of structural-phase transformations, on the other hand, they essentially influence both the pre-transitional low-stability structural-phase states and the rate of diffusion processes. The temperature behavior of the short-range order parameter suggests that the higher the vacancy concentration (i.e., system’s defectiveness), the higher the temperatures at which the tendencies for increasing atomic ordering would be manifested due to intensified diffusion. This, in turn, evidences of a higher starting structural transformation temperature with an increase in the number of defects in the alloy during cooling. An analysis of the temperature curves of the long-range order parameter of the NiAl intermetallide allows making a conclusion that an increased vacancy concentration (i.e., the alloy’s defectiveness) gives rise to a logical result – decreased long-range ordering in the system in the region of low-stability pre-transitional states and increased starting transformation temperature.
About the authors
A. I. Potekaev
National Research Tomsk State University; V. D. Kuznetsov Siberian Physical-Technical Institute
Author for correspondence.
Email: kanc@spti.tsu.ru
Russian Federation, Tomsk; Tomsk
A. A. Chaplygina
I. I. Polzunov Altai State Technical University
Email: kanc@spti.tsu.ru
Russian Federation, Barnaul
P. A. Chaplygin
I. I. Polzunov Altai State Technical University
Email: kanc@spti.tsu.ru
Russian Federation, Barnaul
M. D. Starostenkov
I. I. Polzunov Altai State Technical University
Email: kanc@spti.tsu.ru
Russian Federation, Barnaul
V. V. Kulagina
V. D. Kuznetsov Siberian Physical-Technical Institute; Siberian State Medical University
Email: kanc@spti.tsu.ru
Russian Federation, Tomsk; Tomsk
A. A. Klopotov
V. D. Kuznetsov Siberian Physical-Technical Institute; Tomsk State Architecture and Building University
Email: kanc@spti.tsu.ru
Russian Federation, Tomsk; Tomsk
L. S. Grinkevich
National Research Tomsk State University
Email: kanc@spti.tsu.ru
Russian Federation, Tomsk
Supplementary files
