Single X-ray Bursts and the Model of a Spreading Layer of Accreting Matter over the Neutron Star Surface


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The excess of the rate of type I X-ray bursts over that expected when the matter fallen between bursts completely burns out in a thermonuclear explosion which is observed in bursters with a high persistent luminosity (4 × 1036LX ≲ 2 × 1037 erg s−1) is explained in terms of the model of a spreading layer of matter coming from the accretion disk over the neutron star surface. In this model the accreting matter settles to the stellar surface mainly in two high-latitude ring zones. Despite the subsequent spreading of matter over the entire star, its surface density in these zones turns out to be higher than the average one by 2–3 orders of magnitude, which determines the predominant ignition probability. The multiple events whereby the flame after the thermonuclear explosion in one ring zone (initial burst) propagates through less densematter to another zone and initiates a second explosion in it (recurrent burst) make a certain contribution to the observed excess of the burst rate. However, the localized explosions of matter in these zones, after which the burning in the zone rapidly dies out without affecting other zones, make a noticeably larger contribution to the excess of the burst rate over the expected one.

作者简介

S. Grebenev

Space Research Institute

编辑信件的主要联系方式.
Email: grebenev@iki.rssi.ru
俄罗斯联邦, Profsoyuznaya ul. 84/32, Moscow, 117997

I. Chelovekov

Space Research Institute

Email: grebenev@iki.rssi.ru
俄罗斯联邦, Profsoyuznaya ul. 84/32, Moscow, 117997

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Inc., 2018