A Mathematical-Statistics Approach to the Least Squares Method


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider a mathematical-statistics approach to least-squares parameter estimation in a linear multiple regression model. This approach has led to a detailed description of the basic premises for the emergence and application of the least-squares method, produced a number of general distributional and statistical formulas for the estimation of model parameters independently of a specific joint distribution of the random variables, provided a deeper understanding of the parameter estimation risks associated with model specification errors, and made it possible to identify the place and role of knowledge of the theoretical and empirical distributions of observation errors.

作者简介

A. Belov

Faculty of Computational Mathematics and Cybernetics, Moscow State University

编辑信件的主要联系方式.
Email: ba511@bk.ru
俄罗斯联邦, Moscow

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018