Influence of graphene oxide nanoparticles on functional activity of Jurkat cell line
- 作者: Usanina D.I.1,2, Bochkova M.S.1,2, Timganova V.P.1, Zamorina S.A.1,2
-
隶属关系:
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
- Perm State University
- 期: 卷 28, 编号 1 (2025)
- 页面: 33-38
- 栏目: SHORT COMMUNICATIONS
- URL: https://ogarev-online.ru/1028-7221/article/view/277339
- DOI: https://doi.org/10.46235/1028-7221-16996-IOG
- ID: 277339
如何引用文章
全文:
详细
Graphene oxide offers properties that make it a promising material for numerous biomedical applications, including various cancer treatment methods. Nanomaterials may overcome certain limitations of conventional chemotherapy. In cancer research, cell lines like Jurkat (T cell acute lymphoblastic leukemia cells) serve as models for investigating tumor treatment strategies. Previous studies have explored the effect of pegylated graphene oxide nanoparticles on some parameters of Jurkat cells, such as metabolism and apoptosis. This study aims to investigate how pegylated graphene oxide nanoparticles, varying in size, surface functionalization, and concentration, influence the functional activity of Jurkat cells, including cell viability, IL-2 production, and CD69 expression, both spontaneously, and following external activation.
Jurkat cells were cultured with different types of graphene oxide nanoparticles (100-200 nm and 1-5 ìm; functionalized with linear and branched polyethylene glycol (PEG)) at concentrations of 5 ìg/ mL and 25 ìg/ mL for 24 hours. For assessment of cell parameters under stimulation with different types of particles, phytohemagglutinin (PHA, 50 ìg/mL) was used. Subsequently, the cells were stained with Zombie Aqua and CD69-APC antibody, followed by flow cytometry analysis (CytoFlex S) to determine the percentage of viable cells and CD69-expressing cells. The presence of IL-2 in cell culture supernatants was quantified using ELISA tests.
It was observed that nanoparticles at low concentrations did not induce cytotoxic effects; cell viability improved after PHA stimulation. Small particles (100-200 nm) coated with linear PEG induced IL-2 production and CD69 expression. However, 1-5 ìm graphene oxide modified with branched PEG at a concentration of 25 ìg/mL led to a decrease in CD69 expression following PHA-stimulation.
It was shown for the first time that pegylated graphene oxide nanoparticles affect the functional activity of Jurkat cells. The influence of particles is dependent on the size, concentration, surface functionalization of graphene oxide, and activation by PHA.
作者简介
D. Usanina
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences; Perm State University
编辑信件的主要联系方式.
Email: usanina_d@mail.ru
Junior Research Associate, Laboratory of Molecular Immunology, Postgraduate Student, Department of Microbiology and Immunology, Faculty of Biology
俄罗斯联邦, Perm; PermM. Bochkova
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences; Perm State University
Email: usanina_d@mail.ru
PhD (Biology), Research Associate, Laboratory of Cellular Immunology and Nanobiotechnology, Senior Lecturer, Department of Microbiology and Immunology, Faculty of Biology
俄罗斯联邦, Perm; PermV. Timganova
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences
Email: usanina_d@mail.ru
PhD (Biology), Research Associate, Laboratory of Cellular Immunology and Nanobiotechnology
俄罗斯联邦, PermS. Zamorina
Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences; Perm State University
Email: usanina_d@mail.ru
PhD, MD (Biology), Leading Research Associate, Laboratory of Cellular Immunology and Nanobiotechnology, Professor, Department of Microbiology and Immunology, Faculty of Biology
俄罗斯联邦, Perm; Perm参考
- Заморина С.А., Храмцов П.В., Раев М.Б., Тимганова В.П., Бочкова М.С., Нечаев А.И., Шунькин Е.О., Хазиахматова О.Г., Малащенко В.В., Литвинова Л.С. Взаимодействие наночастиц оксида графена с клетками линии Jurkat в системе Cell-IQ // Доклады Российской академии наук. Науки о жизни, 2021. Т. 501, № 1. С. 573-579. [Zamorina S.A., Khramtsov P.V., Rayev M.B., Timganova V.P., Bochkova M.S., Nechaev A.I., Shunkin E.O., Khaziakhmatova O.G., Malaschenko V.V., Litvinova L.S. Graphene oxide nanoparticels interaction with Jurkat cell line in Cell-IQ system. Doklady Rossiyskoy akademii nauk. Nauki o zhizni = Reports of the Russian Academy of Sciences. Life Sciences, 2021, Vol. 501, no. 1, pp. 438-443. (In Russ.)]
- Тимганова В.П., Власова В.В., Бочкова М.С., Шардина К.Ю., Ужвиюк С.В., Храмцов П.В., Раев М.Б., Заморина С.А. Влияние пегилированного оксида графена на метаболизм клеток линии Jurkat // Доклады российской академии наук. Науки о жизни, 2023. Т. 512, № 1. С. 288-291. [Timganova V.P., Vlasova V.V., Bochkova M.S., Shardina K.Yu., Uzhviyuk S., Khramtsov P.V., Rayev M.B., Zamorina S.A. Effect of PEGylated graphene oxide nanoparticles on the metabolism of jurkat cells. Doklady Rossiyskoy akademii nauk. Nauki o zhizni = Reports of the Russian Academy of Sciences. Life Sciences, 2023, Vol. 512, pp. 288-291. (In Russ.)]
- Усанина Д.И., Ужвиюк С.В., Заморина С.А. Влияние наночастиц оксида графена на апоптоз T-лимфоцитов и клеток линии Jurkat // Российский иммунологический журнал, 2023. Т. 26, № 3. С. 409-414. [Usanina D.I., Uzhviyuk S.V., Zamorina S.A. Effect of graphene oxide nanoparticles on apoptosis of T-lymphocytes and Jurkat cells. Rossiyskiy immunologicheskiy zhurnal = Russian Journal of Immunology, 2023, Vol. 26, no. 3, pp. 409-414. (In Russ.)] doi: 10.46235/1028-7221-9635-EOG.
- Alhallak K., Sun J., Muz B., Jeske A., O’Neal J., Ritchey J.K., Achilefu S., DiPersio J.F., Azab A.K. Liposomal phytohemagglutinin: In vivo T-cell activator as a novel pan-cancer immunotherapy. J. Cell. Mol. Med., 2022, Vol. 26, no. 3. pp. 940-944.
- Cheng Z., Li M., Dey R., Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J. Hematol. Oncol., 2021, Vol. 14, no. 1, 85. doi: 10.1186/s13045-021-01096-0.
- Duong C.P., Westwood J.A., Yong C.S., Murphy A., Devaud C., John L.B., Darcy P.K., Kershaw M.H. Engineering T cell function using chimeric antigen receptors identified using a DNA library approach. PLoS One, 2013, Vol. 8, no. 5, e63037. doi: 10.1371/journal.pone.0063037.
- Gioia L., Siddique A., Head S.R., Salomon D.R., Su A.I. A genome-wide survey of mutations in the Jurkat cell line. BMC Genomics, 2018, Vol. 19, no. 1, 334. doi: 10.1186/s12864-018-4718-6.
- Khramtsov P., Bochkova M., Timganova V., Nechaev A., Uzhviyuk S., Shardina K., Maslennikova I., Rayev M., Zamorina S. Interaction of graphene oxide modified with linear and branched PEG with monocytes isolated from human blood. Nanomaterials, 2022, Vol. 12, no. 1, 126. doi: 10.3390/nano12010126.
- Liu Z., Robinson J.T., Tabakman S.M., Yang K., Dai H. Carbon materials for drug delivery & cancer therapy. Mater. Today, 2011, Vol. 14, no. 7-8, pp. 316-323.
- Priyam J., Saxena U. Therapeutic applications of carbon nanomaterials in renal cancer. Biotechnol. Lett., 2023, Vol. 45, no. 11-12, pp. 1395-1416.
- Schneider U., Schwenk H.-U., Bornkamm G. Characterization of ebv-genome negative null and t cell lines derived from children with acute lymphoblastic leukemia and leukemic transformed non-hodgkin lymphoma. Int. J. Cancer, 1977, Vol. 19, no. 5, pp. 621-626.
- Wu Q., Yang Z., Nie Y., Shi Y., Fan D. Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett., 2014, Vol. 347, no. 2, pp. 159-166.
补充文件
