Наблюдение поверхностного плазмонного резонанса в монохроматическом терагерцевом излучении на антимониде индия

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящее время интенсивно осваивается терагерцевый диапазон частот, находящийся на границе микроволнового и оптического диапазонов. Одним из широко используемых материалов в терагерцевой оптике является антимонид индия (InSb), чья плазменная частота ωp зависит от степени легирования, температуры и освещенности поверхности. Обсуждается возможность генерации на поверхности образца InSb поверхностных плазмон-поляритонов – разновидности поверхностных электромагнитных волн – методом нарушенного полного внешнего отражения (НПВО) (схема Отто). При помощи формализма матриц рассеяния установлены условия наибольшей эффективности возбуждения поверхностных плазмон-поляритонов. В случае применения для этого терагерцевого излучения с частотой ω немного меньше ωp длина распространения таких плазмон-поляритонов и глубина проникновения их поля в окружающую среду (воздух) сравнимы с длиной волны излучения. Возможно достижение поверхностного плазмонного резонанса в виде резкого уменьшения интенсивности отраженного от основания призмы НПВО монохроматического излучения при изменении угла падения и величины воздушного зазора. Были выполнены тестовые эксперименты по наблюдению поверхностного плазмонного резонанса на пластине InSb с использованием призмы из высокоомного кремния и монохроматического излучения (λ = 141 мкм) Новосибирского лазера на свободных электронах. Исследована зависимость резонансного провала от величины воздушного зазора, отделяющего призму от поверхности образца, и установлено его оптимальное (в случае резонанса) значение для полупроводников с плазменной частотой в терагерцевом диапазоне.

Об авторах

И. Ш. Хасанов

Научно-технологический центр уникального приборостроения РАН

Автор, ответственный за переписку.
Email: khasanov@ntcup.ru
Россия, 117342, Москва

В. В. Герасимов

Институт ядерной физики им. Г.И. Будкера СО РАН; Новосибирский государственный университет

Автор, ответственный за переписку.
Email: khasanov@ntcup.ru
Россия, 630090, Новосибирск; Россия, 630090, Новосибирск

О. Э. Камешков

Институт ядерной физики им. Г.И. Будкера СО РАН; Новосибирский государственный университет

Email: v.v.gerasimov3@gmail.com
Россия, 630090, Новосибирск; Россия, 630090, Новосибирск

А. К. Никитин

Научно-технологический центр уникального приборостроения РАН

Email: v.v.gerasimov3@gmail.com
Россия, 117342, Москва

В. В. Кассандров

Российский университет дружбы народов

Email: v.v.gerasimov3@gmail.com
Россия, 117198, Москва

Список литературы

  1. Soler M., Lechuga L.M. // J. Appl. Phys. 2021. V. 129. № 11. P. 111102. https://doi.org/10.1063/5.0042811
  2. Surface Plasmon Resonance Sensors. A Materials Guide to Design, Characterization, Optimization, and Usage, 2019.
  3. Berini P., De Leon I. // Nature Photon. 2012. V. 6. № 1. P. 16. https://doi.org/10.1038/nphoton.2011.285
  4. Ayata M., Fedoryshyn Y., Heni W., Baeuerle B., Josten A., Zahner M., Koch U., Salamin Y., Hoessbacher C., Haffner C., Elder D.L., Dalton L.R., Leuthold J. // Science. 2017. V. 358. № 6363. P. 630. https://doi.org/10.1126/science.aan5953
  5. Plasmonics and Super-Resolution Imaging. Singapore: Pan Stanford Publishing, 2017. p. 482.
  6. Carvalho W.O.F., Mejía-Salazar J.R. // Sensors (Basel). 2020. V. 20. № 9. P. 2488. https://doi.org/10.3390/s20092488
  7. Shrivastav A.M., Cvelbar U., Abdulhalim I. // Commun. Biol. 2021. V. 4. № 1. P. 70. https://doi.org/10.1038/s42003-020-01615-8
  8. Balbinot S., Srivastav A.M., Vidic J., Abdulhalim I., Manzano M. // Trends Food Sci. Technol. 2021. V. 111. P. 128. https://doi.org/10.1016/j.tifs.2021.02.057
  9. Phan Q.-H., Phan Q.-H., Lai Y.-R., Xiao W.-Z., Pham T.-T.-H., Lien C.-H., Lien C.-H. // Opt. Express. 2020. V. 28. № 17. P. 24889. https://doi.org/10.1364/OE.400721
  10. Chen X., Lindley-Hatcher H., Stantchev R.I., Wang J., Li K., Hernandez Serrano A., Taylor Z.D., Castro-Camus E., Pickwell-MacPherson E. // Chem. Phys. Rev. 2022. V. 3. № 1. P. 011311. https://doi.org/10.1063/5.0068979
  11. Banerjee A., Chakraborty B., Inokawa H., Nath Roy J. Terahertz Biomedical and Healthcare Technologies: Materials to Devices. Elsevier, 2020.
  12. Krotkus A. // J. Phys. D. 2010. V. 43. № 27. P. 273001. https://doi.org/10.1088/0022-3727/43/27/273001
  13. Ranjana J.S. Investigations on InSb Plasmonic Devices for Sensor Applications at Terahertz Frequencies. PhD Thesis. National Institute of Technology Karnataka, Surathkal, 2017.
  14. Barchiesi D. // New Perspectives in Biosensors Technology and Applications. / Ed. Serra P.A. 2011. Ch. 5. P. 105. https://doi.org/10.5772/16657
  15. Kameshkov O., Gerasimov V., Knyazev B. // Sensors. 2021. V. 22. № 1. P. 172. https://doi.org/10.3390/s22010172
  16. Gerasimov V.V., Knyazev B.A., Kotelnikov I.A., Nikitin A.K., Cherkassky V.S., Kulipanov G.N., Zhizhin G.N. // J. Opt. Soc. Am. B. 2013. V. 30. № 8. P. 2182. https://doi.org/10.1364/JOSAB.30.002182
  17. Chochol J., Postava K., Čada M., Vanwolleghem M., Mičica M., Halagačka L., Lampin J.-F., Pištora J. // J. Eur. Opt. Soc.-Rapid Publ. 2017. V. 13. № 1. P. 13. https://doi.org/10.1186/s41476-017-0044-x
  18. Levinshtein M., Rumyantsev S., Shur M. Handbook Series on Semiconductor Parameters. Si, Ge, C (Diamond), GaAs, GaP, GaSb, InAs, InP, InSb. World Scientific, 2000. 218 p.
  19. Агранович В.М., Миллс Д.Л. Поверхностные поляритоны: электромагнитные волны на поверхностях и границах раздела сред. М.: Наука, 1985. 525 с.
  20. Raether H. // Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1988. https://doi.org/10.1007/BFb0048319
  21. Barchiesi D., Otto A. // Riv. del Nuovo Cim. 2013. V. 36. № 5. P. 173. https://doi.org/10.1393/ncr/i2013-10088-9
  22. Shibayama J., Mitsutake K., Yamauchi J., Nakano H. // Microwave Opt. Technol. Lett. 2021. V. 63. № 1. P. 103. https://doi.org/10.1002/mop.32581
  23. Nazarov M.M., Bezus E.A., Shkurinov A.P. // Laser Phys. 2013. V. 23. № 5. P. 056008.
  24. Hilal M., Rashid B., Khan S.H., Khan A. // Mater. Chem. Phys. 2016. V. 184. P. 41. https://doi.org/10.1016/j.matchemphys.2016.09.009
  25. Комков О.С., Фирсов Д.Д., Львова Т.В., Седова И.В., Семeнов А.Н., Соловьeв В.А., Иванов С.В. // Физика твердого тела. 2016. Т. 58. Вып. 12. С. 2307.
  26. Nikitin A.K., Gerasimov V.V., Knyazev B.A., Lien N.T.H., Trang T.T. // J. Phys.: Conf. Ser. 2020. V. 1636. P. 012036. https://doi.org/10.1088/1742-6596/1636/1/012036
  27. Khasanov I.Sh., Zykova L.A., Nikitin A.K., Knyazev B.A., Gerasimov V.V., Trang T.T. Terahertz Surface Plasmon Resonance Microscopy Based on Ghost Imaging with Pseudo-Thermal Speckle Light. 2020 45th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Buffalo, NY, USA, 2020. P. 1. https://doi.org/10.1109/IRMMW-THz46771.2020.9370795
  28. Chochol J., Mičica M., Postava K., Vanwolleghem M., Lampin J.-F., Čada M., Pištora J. Demonstration of Magnetoplasmon Polariton at InSb/Dielectric Interface. 2018 43rd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Nagoya, Japan, 2018. P. 1. https://doi.org/10.1109/IRMMW-THz.2018.8510484
  29. Hirori H., Nagai M., Tanaka K. // Opt. Express. 2005. V. 13. № 26. P. 10801. https://doi.org/10.1364/OPEX.13.010801
  30. Nazarov M.M., Shkurinov A.P., Garet F., Coutaz J.-L. // IEEE Trans. Terahertz Sci. Technol. 2015. V. 5. № 4. P. 680. https://doi.org/10.1109/TTHZ.2015.2443562
  31. Postava K., Chochol J., Mičica M., Vanwolleghem M., Kolejak P., Halagačka L., Cada M., Pištora J., Lampin J.-F. // Proc. SPIE. 2016. V. 10142. P. 1014207. https://doi.org/10.1117/12.2264550
  32. Howells S.C., Schlie L.A. // Appl. Phys. Lett. 1996. V. 69. № 4. P. 550. https://doi.org/10.1063/1.117783
  33. Chochol J., Postava K., Čada M., Vanwolleghem M., Halagačka L., Lampin J.-F., Pištora J. // AIP Adv. 2016. V. 6. № 11. P. 115021. https://doi.org/10.1063/1.4968178
  34. Palik E. Handbook of Optical Constants of Solids [Vols. 1–4 combined]. AP, 1998.
  35. Wang Q., Tang Q., Zhang D., Wang Z., Huang Y. // Superlattices and Microstructures. 2014. V. 75. P. 955. https://doi.org/10.1016/j.spmi.2014.09.015
  36. Tao J., Hu B., He X.Y., Wang Q.J. // IEEE Trans. Nanotechnol. 2013. V. 12. № 6. P. 1191. https://doi.org/10.1109/TNANO.2013.2285127
  37. Isaac T.H., Gómez Rivas J., Sambles J.R., Barnes W.L., Hendry E. // Phys. Rev. B. 2008. V. 77. № 11. P. 113411. https://doi.org/10.1103/PhysRevB.77.113411
  38. Gu P., Tani M., Kono S., Sakai K., Zhang X.-C. // J. Appl. Phys. 2002. V. 91. № 9. P. 5533. https://doi.org/10.1063/1.1465507
  39. Litwin-Staszewska E., Szymańska W., Piotrzkowski R. // Phys. Stat. Sol. B. 1981. V. 106. № 2. P. 551. https://doi.org/10.1002/pssb.2221060217
  40. Chochol J., Postava K., Čada M., Pištora J. // Sci. Rep. 2017. V. 7. № 1. P. 13117. https://doi.org/10.1038/s41598-017-13394-0
  41. Львова Т.В., Дунаевский М.С., Лебедев М.В., Шахмин А.Л., Седова И.В., Иванов С.В. // Физика и техника полупроводников. 2013. Т. 47. Вып. 5. С. 710.
  42. Cunningham R.W., Gruber J.B. // J. Appl. Phys. 1970. V. 41. № 4. P. 1804. https://doi.org/10.1063/1.1659107
  43. Putley E.H. // Appl. Opt. 1965. V. 4. № 6. P. 649. https://doi.org/10.1364/AO.4.000649
  44. Fan F., Chen S., Chang S.-J. // IEEE J. Selected Topics Quantum Electronics. 2017. V. 23. № 4. https://doi.org/10.1109/JSTQE.2016.2537259
  45. Byszewski P., Kołodziejczak J., Zukotyński S. // Phys. Stat. Sol. B. 1963. V. 3. № 10. P. 1880. https://doi.org/10.1002/pssb.19630031014
  46. Byrnes S.J. // arXiv:1603.02720 [physics]. 2020
  47. Anisimov A.V., Khasanov I.Sh. // J. Phys.: Conf. Ser. 2021. V. 2091. № 1. P. 012067. https://doi.org/10.1088/1742-6596/2091/1/012067
  48. Gerasimov V.V. // J. Opt. Technol. 2010. V. 77. № 8. P. 465. https://doi.org/10.1364/JOT.77.000465
  49. Gerasimov V.V., Zhizhin G.N., Knyazev B.A., Kotelnikov I.A., Mitina N.A., Nikitin A.K. // Bull. Russ. Acad. Sci.: Phys. 2013. V. 77. № 9. P. 1167. https://doi.org/10.3103/S1062873813090141
  50. Knyazev B.A. // AIP Conf. Proc. 2020. V. 2299. № 1. P. 030001. https://doi.org/10.1063/5.0030349

Дополнительные файлы


© И.Ш. Хасанов, В.В. Герасимов, О.Э. Камешков, А.К. Никитин, В.В. Кассандров, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».