Structural Transformations in Bimetallic Ni–Ag Nanoparticles with Janus Structure
- Authors: Sdobnyakov N.Y.1, Sokolov D.N.1, Bogdanov S.S.1, Kolosov A.Y.1, Savina K.G.1, Bazulev A.N.1, Nepsha N.I.1
-
Affiliations:
- Tver State University
- Issue: No 5 (2025)
- Pages: 106-115
- Section: Articles
- URL: https://ogarev-online.ru/1028-0960/article/view/356818
- DOI: https://doi.org/10.7868/S3034573125050131
- ID: 356818
Cite item
Abstract
Structural transformations in Ni–Ag bimetallic nanoparticles sized 5 nm were investigated after a cycle of sequential phase transitions corresponding to melting and crystallization. The initial configuration of the Ni–Ag bimetallic nanoparticles corresponded to a Janus structure. Two alternative methods — molecular dynamics and Monte Carlo methods — were used to simulate the thermally induced effects. The tight binding potential was used as the intermolecular interaction potential. It was shown that for Ni–Ag bimetallic nanoparticles, surface segregation of Ag atoms is characteristic, and specific features of the segregation behavior of Ag atoms at different concentrations were identified. The obtained regularities are compared with the experimental results for Ni–9 wt. % Ag nanoparticles synthesized by the method of electric explosion of wires, which is characterized by the formation of particles with a "core–shell" structure. Based on the analysis of calorimetric curves of the potential part of the specific internal energy, hysteresis of the melting and crystallization temperatures was revealed, allowing for the estimation of the starting and finishing temperatures of the corresponding phase transition, as well as determining the thermal stability intervals. In addition, it was found that with an increase in the number of nickel atoms in the composition of the particles, the width of the hysteresis of the melting and crystallization temperatures increases.
About the authors
N. Yu. Sdobnyakov
Tver State University
Author for correspondence.
Email: nsdobnyakov@mail.ru
Tver, Russia
D. N. Sokolov
Tver State University
Email: nsdobnyakov@mail.ru
Tver, Russia
S. S. Bogdanov
Tver State University
Email: nsdobnyakov@mail.ru
Tver, Russia
A. Yu. Kolosov
Tver State University
Email: nsdobnyakov@mail.ru
Tver, Russia
K. G. Savina
Tver State University
Email: nsdobnyakov@mail.ru
Tver, Russia
A. N. Bazulev
Tver State University
Email: nsdobnyakov@mail.ru
Tver, Russia
N. I. Nepsha
Tver State University
Email: nsdobnyakov@mail.ru
Tver, Russia
References
- Guisbiers G., Khand S., Ruiz-Zepeda F., De la Puentea J.R., José-Yacamana M. // Nanoscale. 2014. V. 6. I. 24. P. 14630. https://www.doi.org/10.1039/C4NR05739B
- Delogu F. // Acta Mater. 2014. V. 66. P. 388. https://www.doi.org/10.1016/j.actamat.2013.11.028 https://www.doi.org/10.1134/S0036024417120068
- Lee C.-C., Chen D.-H. // Nanotechnology. 2006. V. 17. Iss. 13. P. 3094. https://www.doi.org/10.1088/0957-4484/17/13/002
- Gorbachevsky M.V., Kopitsyn D.S., Tiunov I.A., Kotelev M.S., Vinokurov V.A., Novikov A.A. // Russ. J. Phys. Chem. 2017. V. 91. Iss. 1. P. 141. https://www.doi.org/10.1134/S0036024417010071
- Wang L., Kang F., Shi G., Jin C., Li H., Liu H., Yao B. // Russ. J. Phys. Chem. 2018. V. 92. Iss. 4. P. 778. https://www.doi.org/10.1134/S0036024418040167
- Lixin X., Xinhua H., Xiaobo K., Zhao H., Sun M., Chen X. // Colloids Surf. A: Physicochem. Eng. Asp. 2010. V. 367. Iss. 1–3. P. 96. https://www.doi.org/10.1016/j.colsurfa.2010.06.020
- Cui Z.-X., Zhao M.-Z., Lai W.-P., Xue Y.-Q. // J. Phys. Chem. C. 2011. V. 115. Iss. 46. P. 22796. https://www.doi.org/10.1021/jp2067364
- Ferrando R., Fortunelli A., Rossi G. // Phys. Rev. B. 2005. V. 72. Iss. 8. P. 085449. https://www.doi.org/10.1103/PhysRevB.72.085449
- Samsonov V.M., Talyzin I.V., Kartoshkin A.Yu., Vasilyev S.A. // Appl. Nanosci. 2019. V. 9. Iss. 1. P. 119. https://www.doi.org/10.1007/s13204-018-0895-5
- Samsonov V.M., Bembel A.G., Kartoshkin A.Yu., Vasilyev S.A., Talyzin I.V. // Therm. Anal. Calorim. 2018. V. 133. Iss. 2. P. 1207. https://www.doi.org/10.1007/s10973-018-7245-4
- Tabatabaei S., Sadmerchad S.K. // Bull. Mater. Sci. 2014. V. 37. Iss. 6. P. 1447. https://www.doi.org/10.1007/s12034-014-0095-1
- Eom N., Messing M.E., Johansson J., Deppert K. // ACS Nano. 2021. V. 15. Iss. 5. P. 8883. https://www.doi.org/10.1021/acsnano.1c01500
- Богданов С.С., Сдобняков Н.Ю. Закономерности структурообразования в бинарных наночастицах ГЦК металлов при термическом воздействии: атомистическое моделирование. Тверь: Изд-во ТвГУ, 2023. 144 с. https://www.doi.org/10.26456/bs.2023.144
- Сдобняков Н.Ю., Колосов А.Ю., Соколов Д.Н., Савина К.Г., Базулев А.Н., Вересов С.А., Серов С.В. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2023. Вып. 15. С. 589. https://www.doi.org/10.26456/pcascnn/2023.15.589
- Sobol N.Y., Khort A., Myasnichenko V., Podbolotov K., Romanovskaja E., Kolosov A., Sokolov D., Romanovski V. // Comput. Mater. Sci. 2020. V. 184. P. 109936. 12 p. https://www.doi.org/10.1016/j.commatsci.2020.109936
- Myasnichenko V., Sobol N.Y., Kirilov L., Mikhov R., Fidanova S. Monte Carlo approach for modeling and optimization of one-dimensional bimetallic nanostructures. // Lecture Notes in Computer Science. Conference paper: International Conference on Numerical Methods and Applications, 20–24 August 2018. Borovets, Bulgaria. 2019. V. 11189. P. 133. https://www.doi.org/10.1007/978-3-030-10692-8_15
- Myasnichenko V., Sobol N.Y., Kirilov L., Mikhov R., Fidanova S. Structural instability of gold and bimetallic nanowires using Monte Carlo simulation. // Recent Advances in Computational Optimization. Studies in Computational Intelligence. V. 838. / Ed. Fidanova S. Cham: Springer, 2020. P. 133. https://www.doi.org/10.1007/978-3-030-22723-4_9
- Viswanathan V., Wang F., Pitsch H. // Comput. Sci. Eng. 2012. V. 14. Iss. 2. P. 60. https://www.doi.org/10.1109/MCSE.2011.40
- Arif I., Agrahari G., Gautam A.K., Chatterjee A. // Surf. Sci. 2020. V. 691. P. 121503. https://www.doi.org/10.1016/j.susc.2019.121503
- Breyton G., Amara H., Nelayah J., Creuz J., Guesmi H., Alloyeau D., Wang G., Ricouleau C. // Phys. Rev. Lett. 2023. V. 130. P. 236201. https://www.doi.org/10.1103/PhysRevLett.130.236201
- Lu X.-Z., Shao G.-F., Xu L.-Y., Liu T.-D., Wen Y.-H. // Chin. Phys. B. 2016. № 5. P. 053601. https://www.doi.org/10.1088/1674-1056/25/5/053601
- Metropolis N., Ulam S. // J. Am. Stat. Assoc. 1949. V. 44. I. 247. P. 335–341. https://www.doi.org/10.1080/01621459.1949.10483310
- Самсонов В.М., Сдобняков Н.Ю., Татьянин Н.В. // Поверхность. Рентген. синхротр. и нейтрон. исслед. 2019. № 12. С. 31. https://www.doi.org/10.1134/S1028096019120264
- Suliz K.V., Kolosov A.Yu., Myasnichenko V.S., Nepsha N.I., N.Yu. Sdobnyakov N.Yu., Pervikov A.V. // Adv. Powder Technol. 2022. V. 33. Iss. 3. P. 103518. https://www.doi.org/10.1016/j.apt.2022.103518
- Stukowski A. // Model. Simul. Mater. Sci. Eng. 2010. V. 18. Iss. 1. P. 015012. https://www.doi.org/10.1088/0965-0393/18/1/015012
- Zhou L.-L., Pan J.-M., Lang L., Tian Z.-A., Mo Y.-F., Dong K.-J. // RSC Adv. 2021. V. 11. P. 39829. https://www.doi.org/10.1039/D1RA06777J
- Samsonov V.M., Talyzin I.V., Samsonov M.V. // Tech. Phys. 2016. V. 61. P. 946. https://www.doi.org/10.1134/S1063784216060207
- Cleri F., Rosato V. // Phys. Rev. B. 1993. V. 48. Iss. 1. P. 22. https://www.doi.org/10.1103/PhysRevB.48.22
- Gupta R.P. // Phys. Rev. B. 1981. V. 23. Iss. 12. P. 6265. https://www.doi.org/10.1103/PhysRevB.23.6265
- Chamati H., Papanicolaou N.I. // J. Phys. Condens. Matter. 2004. V. 16. Iss. 46. P. 8399. https://www.doi.org/10.1088/0953-8984/16/46/025
- Guevara J., Llois A.M., Weissmann M. // Phys. Rev. B. 1995. V. 52. Iss. 15. P. 11509. https://www.doi.org/10.1103/PhysRevB.52.11509
- Сдобняков Н.Ю., Соколов Д.Н. Изучение термодинамических и структурных характеристик наночастиц металлов в процессах плавления и кристаллизации: теория и компьютерное моделирование. Монография. Тверь: Изд-во ТвГУ, 2018. 176 с.
- Romanovski V., Sdobnyakov N., Kolosov A., Savina K., Nepsha N., Moskovskikh D., Dobryden I., Zhang Z., Beletskii E., Romanovskaia E. // Nano-Struct. Nano-Objects. 2024. V. 40. Art. № 101377. 10 p. https://doi.org/10.1016/j.nanoso.2024.101377
- Sdobnyakov N.Yu., Samsonov V.M., Myasnichenko V.S., Ershov P.M., Bazulev A.N., Vereev S.A., Bogdanov S.S., Savina K.G. // J. Phys. Conf. Ser. 2021. V. 2052. Art. № 012038. 4 p. https://www.doi.org/10.1088/1742-6596/2052/1/012038.
- Вересов С.А., Савина К.Г., Веселов А.Д. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2022. Вып. 14. С. 371. https://www.doi.org/10.26456/pcascnn/2022.14.371
- Goyhenex G. // Surf. Sci. 2012. V. 606. Iss. 3–4, P. 325. https://www.doi.org/10.1016/j.susc.2011.10.014
- Paz-Borbon L.O. Computational studies of transition metal nanoalloys. Berlin: Springer-Verlag, 2011. 156 p. https://www.doi.org/10.1007/978-3-642-18012-5
- Samsonov V.M., Romanov A.A., Talyzin I.V., Zhigunov D.V., Pulrov V.V. // Bull. Russ. Acad. Sci. Phys. 2024. V. 88. P. 739–744. https://www.doi.org/10.1134/S1062873824706512
- Gafner Y., Gafner S., Redel L., Poletaev G. // J. Nanopart. Res. 2023. V. 25. P. 205. https://www.doi.org/10.1007/s11051-023-05850-y
- Bogdanov S., Samsonov V., Sdobnyakov N., Myasnichenko V., Talyzin I., Savina K., Romanovski V., Kolosov A. // J. Mater. Sci. 2022. V. 57. P. 13467. https://www.doi.org/10.1007/s10853-022-07476-2
- Fang T.-H., Wu C.-D., Chang W.-J., Chi S.-S. // Appl. Surf. Sci. 2009. V. 255. Iss. 11. P. 6043. https://www.doi.org/10.1016/j.apsusc.2009.01.069
- Сдобняков Н.Ю., Колосов А.Ю., Богданов С.С. Моделирование процессов коалесценции и спекания в моно- и биметаллических наносистемах. Монография. Тверь: Изд-во ТвГУ, 2021. 168 с.
- Романовский В.И., Колосов А.Ю., Хорт А.А., Мясниченко В.С., Подболотов К.Б., Савина К.Г., Соколов Д.Н., Романовская Е.В., Сдобняков Н.Ю. // Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов. 2020. Вып. 12. С. 293. https://www.doi.org/10.26456/pcascnn/2020.12.293
- Samsonov V.M., Sdobnyakov N.Yu., Myasnichenko V.S., Talyzin I.V., Kulagin V.V., Vasilyev S.A., Bembel A.G., Kartoshkin A.Yu., Sokolov D.N. // J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2018. V. 12. № 6. P. 1206. https://www.doi.org/10.1134/S1027451018050671
- Ferrando R. // J. Phys. Condens. Matter. 2015. V. 27. № 1. P. 013003. https://www.doi.org/10.1088/0953-8984/27/1/013003
- Sdobnyakov N.Yu., Sokolov D.N., Samsonov V.M., Komarov P.V. // Russ. Metall. (Met.). 2012. № 3. P. 209. https://www.doi.org/10.1134/S0036029512030111
- Первиков А.В., Хрусталев А.П., Бакина О.В., Ворожцов А.Б., Лернер М.И. // Известия высших учебных заведений. Физика. 2019. Т. 62. № 8. С. 183. https://www.doi.org/10.17223/00213411/62/8/183
- Шарипова А.Ф., Бакина О.В., Ложкомоев А.С., Глазкова Е.А., Первиков А.В., Сваровская Н.В., Лернер М.И., Псахье С.Г., Готман И., Гутманас Э. // Физ. и хим. обраб. матер. 2018. № 6. С. 60. https://www.doi.org/10.30791/0015-3214-2018-6-60-68
Supplementary files


