Influence of the Substrate on the Photoluminescence Spectra of CaF2/Si Multilayer Structures

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, we demonstrate photoluminescence from the CaF2/Si multilayer structures formed on the surface of Si(111), Si(100), and SiO2/Si(100) substrates at ambient temperature followed by annealing. The influence of the substrate structure on the photoluminescence spectra is discussed. Studies of the photoluminescence spectra of the multilayer CaF2/Si structures have shown that the shape and position of the maxima of the photoluminescence spectra on different substrates are different, despite the fact that the structures are identical. The heterostructures differed only in the substrates, while the thicknesses and number of layers were the same. The photoluminescence spectra of the samples on the single-crystal Si(100) and Si(111) substrates are similar in the shape and have the similar wavelengths corresponding to the maximum of the photoluminescence spectra. The position of the wavelengths corresponding to the maximum of the photoluminescence spectra on the Si(100) and Si(111) single-crystal substrates correspond to the calculations obtained on the basis of the quantum confinement effect. At the same time, the shapes of the photoluminescence spectra on an amorphous silicon oxide layer differ sharply from the spectra on single-crystal substrates. The photoluminescence spectra of the samples on the amorphous SiO2/Si(100) substrates have two maxima, and the more intense spectral line is shifted to the shorter wavelengths. It is assumed that the nucleation mechanisms of the silicon nanocrystals and their subsequent crystallization during annealing on the amorphous SiO2/Si(100) substrates are radically different from the formation conditions for the silicon nanocrystals on the single-crystal substrates The different crystallographic structures of the surfaces of the three types of substrates create different conditions for the recrystallization during annealing and, therefore, lead to different properties of both the interfaces of these heterostructures and to different nanocrystalline structures of the silicon layers. Based on the obtained experimental data, a conclusion was made about the influence of the crystallographic structure of the substrates on the photoluminescence spectra.

About the authors

A. A. Velichko

Novosibirsk State Technical University

Email: igor_rudenko.ru@mail.ru
Russia, 630073, Novosibirsk

V. A. Ilyushin

Novosibirsk State Technical University

Email: igor_rudenko.ru@mail.ru
Russia, 630073, Novosibirsk

A. Y. Krupin

Novosibirsk State Technical University

Email: igor_rudenko.ru@mail.ru
Russia, 630073, Novosibirsk

N. I. Filimonova

Novosibirsk State Technical University

Author for correspondence.
Email: ninafilimonova@ngs.ru
Russia, 630073, Novosibirsk

I. E. Rudenko

Novosibirsk State Technical University

Author for correspondence.
Email: igor_rudenko.ru@mail.ru
Russia, 630073, Novosibirsk

References

  1. Шик А.Я., Бакуева Л.Г., Мусихин С.Ф., Рыков С. // Физика низкоразмерных систем. Санкт-Петербург: Наука, 2001. 160 с.
  2. Saeta P.N., Gallagher A.C. // Phys. Rev. B. 1997. V. 55. № 7. P. 4563. https://www.doi.org/10.1103/PhysRevB.55.4563
  3. Zhang Q., Bayliss S.C., Hutt D.A. // Appl. Phys. Lett. 1995. V. 66. P. 1977. https://www.doi.org/10.1063/1.113296
  4. Photopoulos P., Nassiopoulou A.G., Kouvatsos D.N., Travlos A. // Mater. Sci. Engineer. 2000. V. 69. № 70. P. 345. https://www.doi.org/10.1016/s0921-5107(99)00402-x
  5. Cho E.-C., Green M.A., Corkish R., Reece P. // J. Appl. Phys. 2007. V. 101. P 024321. https://www.doi.org/10.1063/1.2430919
  6. Гусев О.Б., Поддубный А.Н., Прокофьев А.А., Яссиевич И.Н. // ФТП. 2013. Т. 47. № 2. С. 147
  7. Canham L. // Faraday Discussions. 2020. V. 222. P. 10. https://www.doi.org/10.1039/d0fd00018c
  8. Okamoto Sh., Kanemitsu Y. // Solid Siate Comm. 1997. V. 103. № 10. P. 573. https://www.doi.org/10.1016/S0038-1098(97)00227-5
  9. Araya M., Diaz-Droguett D.E., Ribeiro M. et at. // J. Non-Cryst. Solids. 2012. V. 358. Iss. 5. P. 880. https://www.doi.org/10.1016/j.jnoncrysol.2011.12.072
  10. Watanabe M., Matsunuma T., Maruyama T., Maeda Y. // Jpn. J. Appl. Phys. 1998. V. 37. P. 591. https://www.doi.org/10.1109/APEIE.2018.8545494
  11. Maruyama T., Nakamura N., Watanabe M. // Jpn. J. Appl. Phys. 2000. V. 39. P. 1996. https://www.doi.org/10.1143/jjap.39.1996
  12. Velichko A.A., Ilyushin V.A., Krupin A.Y., Filimonova N.I. // Rus. Phys. J. 2021. V. 64. № 2. P. 198. https://www.doi.org/10.1007/s11182-021-02316-3
  13. Velichko A.A., Ilyushin V.A., Krupin A.Y., Filimonova N.I. // J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 2021. № 5. P. 13. https://www.doi.org/10.31857/S102809602103016X
  14. Величко А.А., Илюшин В.А., Крупин А.Ю., Гавриленко В.А., Филимонова Н.И. // Поверхность. Рентген., синхротр. и нейтрон. исслед. 2016. № 9. С. 33. https://www.doi.org/10.7868/S020735281609016X
  15. Zhu X., Lu J., Gao Y. et al. // J. Appl. Phys. 2017. V. 56. P. 020305. https://www.doi.org/10.7567/JJAP.56.020305
  16. Pauc N., Calvo V., Eymery J. et al. // Opt. Mater. 2005. V. 27. P. 1000. https://www.doi.org/10.1016/j.optmat.2004.08.052
  17. Botas A.M.P., Anthony R.J., Wu J. et al. // Nanotechnol. 2016. V. 27. P. 325703. https://www.doi.org/10.1088/0957-4484/27/32/325703
  18. Lacona F., Franzo G., Spinella C. // J. Appl. Phys. 2000. V. 87. № 3. P. 1296. https://www.doi.org/10.1063/1.372013
  19. Araya M., Diaz-Droguett D.E., Ribeiro M. et at. // J. Non-Cryst. Solids. 2012. V. 358. P. 880. 10. https://www.doi.org/1016/j.jnoncrysol.2011.12.072
  20. D’Avitaya A., Vervoort L., Bassani F. Ossicini S., Fasolino A., Bernardini F. // Europhys. Lett. 1995. V. 31. № 1. P. 25. https://www.doi.org/10.1209/0295-5075/31/1/005
  21. Величко А.А. Разработка технологии оптоэлектронных МС на гетероструктурах полупроводник– (Ca,Sr,Ba)F2–полупроводник: Дис. ... д-ра технических наук: 01.04.10. Новосибирск: НГТУ, 1999. 372 с.
  22. Бурдов В.А. // ФТП. 2002. Т. 36. № 10. С. 1233.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (88KB)
3.

Download (96KB)
4.

Download (122KB)
5.

Download (120KB)

Copyright (c) 2023 А.А. Величко, В.А. Илюшин, А.Ю. Крупин, Н.И. Филимонова, И.Е. Руденко

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».