The Role of Neuropeptide CGRP in the Regulation of Neurotransmitter Release in Regenerating Mouse Neuromuscular Junctions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We have previously found that in mature mouse motor synapses calcitonin gene-related peptide (CGRP) causes an increase in the size of acetylcholine (ACh) quanta and described a complex molecular cascade leading to the release of endogenous CGRP and a subsequent increase in the amplitude of miniature end plate potentials (MEPPs) after long-term synaptic activity (i.e., in the post-tetanic period). In functionally immature motor synapses regenerating after nerve injury, mechanisms that facilitate synaptic transmission are of particular interest as a potential way of influencing the processes of skeletal muscle reinnervation. In this work, we tested how exogenous CGRP affects spontaneous and evoked activity of regenerating motor synapses. Also, using the stimulation mode developed for modeling tetanic activity (2 min, 30 Hz), we described the presence of a post-tetanic increase in the amplitude of MEPPs caused by the release of endogenous CGRP in such synapses. As a result, we are the first to discover an acute, receptor-specific, potentiating effect of exogenous CGRP, as well as the possibility of endogenous CGRP exocytosis followed by subsequent activation of a molecular cascade involving the release of stored calcium and activation of protein kinases A and C, which leads to an increase in the size of ACh quanta in regenerating mouse motor synapses.

Sobre autores

P. Bogacheva

Lomonosov Moscow State University

Moscow, Russia

E. Tarasova

Lomonosov Moscow State University

Email: cate1990@list.ru
Moscow, Russia

O. Balezina

Lomonosov Moscow State University

Moscow, Russia

Bibliografia

  1. Van Der Kloot W., Benjamin W.B., Balezina O.P. // J. Physiol. 1998. V. 507. № 3. P. 689–695.
  2. Rossi S.G., Dickerson I.M., Rotundo R.L. // J. Biol. Chem. 2003. V. 278. № 27. P. 24994–25000.
  3. Edvinsson L. // Br. J. Pharmacol. 2008. V. 155. № 7. P. 967–969.
  4. Vause C.V., Durham P.L. // Neurosci. Lett. 2010. V. 473. № 3. P. 163–167.
  5. Russell F.A., King R., Smillie S.-J., Kodji X., Brain S.D. // Physiol. Rev. 2014. V. 94. № 4. P. 1099–1142.
  6. Conner A.C., Simms J., Barwell J., Wheatley M., Poyner D.R. // Biochem. Soc. Trans. 2007. V. 35. № 4. P. 729–732.
  7. Gaydukov A.E., Bogacheva P.O., Balezina O.P. // Neurosci. Lett. 2016. V. 628. P. 17–23.
  8. Bogacheva P.O., Golikova E.A., Balezina O.P. // Biochem. Mosc. Suppl. Ser. Membr. Cell Biol. 2018. V. 12. № 3. P. 268–277.
  9. Bogacheva P., Balezina O. // Synapse. 2020. V. 74. № 12. P. e22175.
  10. Gaydukov A.E., Balezina O.P. // Brain Behav. 2018. V. 8. № 8. P. e01058.
  11. Tarasova E., Bogacheva P., Chernyshev K., Balezina O. // Synapse. 2024. V. 78. № 1. P. e22281.
  12. Tsujimoto T., Kuno M. // J. Neurosci. 1988. V. 8. № 10. P. 3951–3957.
  13. Lu B., Fu W., Greengard P., Poo M. // Nature. 1993. V. 363. № 6424. P. 76–79.
  14. Bauder A.R., Ferguson T.A. // JoVE. 2012. № 60. P. 3606.
  15. McLachlan E.M., Martin A.R. // J. Physiol. 1981. V. 311. № 1. P. 307–324.
  16. Wong M.Y., Shakiryanova D., Levitan E.S. // J. Mol. Neurosci. 2009. V. 37. № 2. P. 146–150.
  17. Shakiryanova D., Klose M.K., Zhou Y., Gu T., Deitcher D.L., Atwood H.L., Hewes R.S., Levitan E.S. // J. Neurosci. 2007. V. 27. № 29. P. 7799–7806.
  18. Balezina O.P., Bogacheva P.O. // Izv. Akad. Nauk. Ser. Biol. 2009. № 5. P. 591–597.
  19. Gaydukov A.E., Balezina O.P. // Ross. Fiziol. Ž. Im IM Sečenova. 2024. V. 110. № 10. P. 1602–1638.
  20. Takasago T., Imagawa T., Furukawa K., Ogurusu T., Shigekawa M. // J. Biochem. (Tokyo). 1991. V. 109. № 1. P. 163–170.
  21. Park Y.-S., Hur E.-M., Choi B.-H., Kwak E., Jun D.-J., Park S.-J., Kim K.-T. // J. Neurosci. 2006. V. 26. № 35. P. 8999–9005.
  22. Sieburth D., Madison J.M., Kaplan J.M. // Nat. Neurosci. 2007. V. 10. № 1. P. 49–57.
  23. Chu Y., Fioravante D., Leitges M., Regehr W.G. // Neuron. 2014. V. 82. № 4. P. 859–871.
  24. Macdonald W.A., Nielsen O.B., Clausen T. // Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2008. V. 295. № 4. P. R1214–R1223.
  25. Sala C., Andreose J., Fumagalli G., Lomo T. // J. Neurosc. 1995. V. 15. № 1. P. 520–528.
  26. Gaydukov A., Bogacheva P., Tarasova E., Molchanova A., Miteva A., Pravdivceva E., Balezina O. // Cells. 2019. V. 8. № 7. P. 762.
  27. Bogacheva P.O., Pravdivceva E.S., Molchanova A.I., Gaydukov A.E., Balezina O.P. // Журнал Эволюционной Биохимии И Физиологии. 2020. V. 56. № 7. P. 740–741.
  28. Shakiryanova D., Tully A., Hewes R.S., Deitcher D.L., Levitan E.S. // Nat. Neurosci. 2005. V. 8. № 2. P. 173–178.
  29. Fernandez H.L., Ross G.S., Nadelhaft I. // Brain Res. 1999. V. 844. № 1–2. P. 83–97.
  30. Jay J.C., Barald K.F. // Muscle Nerve. 1989. V. 12. № 12. P. 981–992.
  31. Asahina A., Moro O., Hosoi J., Lerner E.A., Xu S., Takashima A., Granstein R.D. // Proc. Natl. Acad. Sci. 1995. V. 92. № 18. P. 8323–8327.
  32. Zhang L., Bonev A.D., Mawe G.M., Nelson M.T. // Am. J. Physiol.-Gastrointest. Liver Physiol. 1994. V. 267. № 3. P. G494—G499.
  33. Cottrell G.S. In: Brain S.D., Geppetti P., eds. Calcitonin Gene-Related Peptide (CGRP) Mechanisms. // Cham. Springer International Publishing. 2018. P. 37—64.
  34. Koenig J., Yamaoka K., Ikeda K. // J. Neurosci. 1993. V. 13. № 6. P. 2313—2322.
  35. Scalettar B.A. // The Neuroscientist. 2006. V. 12. № 2. P. 164—176.
  36. Gaydukov A.E., Balezina O.P. // Ross. Fiziol. Ž. Im IM Sečenova. 2024. V. 110. № 10. P. 1602—1638.
  37. Tarasova E.O., Miteva A.S., Gaydukov A.E., Balezina O.P. // Biochem. Mosc. Suppl. Ser. Membr. Cell Biol. 2015. V. 9. № 4. P. 318—328.
  38. Silveira P.E., Lima R.F., GuimarÃES J.D.S., Molgó J., Naves L.A., Kushmerick C. // Muscle Nerve. 2015. V. 52. № 4. P. 623—630.
  39. Tomàs J., Garcia N., Lanuza M.A., Santafé M.M., Tomàs M., Nadal L., Hurtado E., Simó-Ollé A., Cilleros-Mané V., Just-Borràs L. // Front. Pharmacol. 2018. V. 9. P. 397.
  40. Obis T., Hurtado E., Nadal L., Tomàs M., Priego M., Simon A., Garcia N., Santafe M.M., Lanuza M.A., Tomàs J. // Mol. Brain. 2015. V. 8. № 1. P. 80.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).