АСТРОЦИТЫ И ПЛАСТИЧНОСТЬ СИНАПСОВ. ЧАСТЬ I. СИНАПТОГЕННЫЕ МОЛЕКУЛЫ


Цитировать

Полный текст

Аннотация

Высокий уровень пластичности мозга определяется преимущественно поведением синапсов, которые могут изменять свою структуру, функциональную активность, формироваться вновь или исчезать в течение всего жизненного цикла. С синапсами тесно связаны перисинаптические отростки астроцитов, которые индуцируют образование, консолидируют структуру и поддерживают функцию синапсов, а также участвуют в их элиминации. Астроциты продуцируют множество синаптогенных молекул, которые связываются с нейронами и контролируют синаптическую пластичность. В обзоре рассмотрены молекулярные аспекты нарушений механизмов взаимодействия астроцитов с синапсами, имеющих решающее значение в патогенезе ряда когнитивных нарушений.

Об авторах

Вадим Николаевич Швалев

Национальный медицинский исследовательский центр кардиологии

Email: vadim.shvalev@mail.ru
121552, г. Москва, 3-я Черепковская, д. 15А

Александр Алексеевич Сосунов

Колумбийский университет

Email: aas190@cumc.columbia.edu
Нью-Йорк, 10032, США

Юрий Александрович Челышев

Казанский государственный медицинский университет

Email: chelyshev-kzn@yandex.ru
420012, г. Казань, ул. Бутлерова, д. 49

Список литературы

  1. Allen N.J., Bennett M.L., Foo L.C. et al. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors // Nature. 2012. Vol. 486, № 7403. P. 410-414.
  2. Amaratunga A., Abraham C.R., Edwards R.B. et al. Apolipoprotein E is synthesized in the retina by Muller glial cells, secreted into the vitreous, and rapidly transported into the optic nerve by retinal ganglion cells // J Biol Chem. 1996. Vol. 271, № 10. P. 5628-5632.
  3. Bailey D.B., Jr., Berry-Kravis E., Wheeler A. et al. Mavoglurant in adolescents with fragile X syndrome: analysis of clinical global impression-improvement source data from a double-blind therapeutic study followed by an open-label, long-term extension study // J Neurodev Disord. 2016. Vol. 8. P. 1.
  4. Ballas N., Lioy D.T., Grunseich C., Mandel G. Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology // Nat Neurosci. 2009. Vol. 12. P. 311-317.
  5. Barker A.J., Koch S.M., Reed J. et al. Developmental control of synaptic receptivity // J Neurosci. 2008. Vol. 28, № 33. P. 8150-8160.
  6. Bear M.F., Huber K.M., Warren S.T. The mGluR theory of fragile X mental retardation // Trends Neurosci. 2004. Vol. 27. P. 370-377.
  7. Bialas A.R., Stevens B. TGF-beta signaling regulates neuronal C1q expression and developmental synaptic refinement // Nat Neurosci. 2013. Vol. 16, № 12. P. 1773-1782.
  8. Bosworth A.P., Allen N.J. The diverse actions of astrocytes during synaptic development // Curr Opin Neurobiol. 2017. Vol. 47. P. 38-43.
  9. Castagnola S., Bardoni B., Maurin T. The search for an effective therapy to treat fragile X syndrome: dream or reality? // Front Synaptic Neurosci. 2017. Vol. 9. P. 15.
  10. Chahrour M., Zoghbi H.Y. The story of Rett syndrome: from clinic to neurobiology // Neuron. 2007. Vol. 56. P. 422-437.
  11. Cheng C., Lau S.K., Doering L.C. Astrocyte-secreted thrombospondin-1 modulates synapse and spine defects in the fragile X mouse model // Mol Brain. 2016. Vol. 9, № 1. P. 74.
  12. Christopherson K.S., Ullian E.M., Stokes C.C. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis // Cell. 2005. Vol. 120, № 3. P. 421-433.
  13. Chung W.S., Clarke L.E., Wang G.X. et al. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways // Nature. 2013. Vol. 504, № 7480. P. 394-400.
  14. Cruchaga C., Kauwe J.S., Nowotny P. et al. Cerebrospinal fluid APOE levels: an endophenotype for genetic studies for Alzheimer’s disease // Hum Mol Genet. 2012. Vol. 2, № 20. P. 4558-4571.
  15. DeMattos R.B., Rudel L.L., Williams D.L. Biochemical analysis of cell-derived apoE3 particles active in stimulating neurite outgrowth // J Lipid Res. 2001. Vol. 42, № 6. P. 976-987.
  16. Diniz L.P., Almeida J.C., Tortelli V. et al. Astrocyte-induced synaptogenesis is mediated by transforming growth factor beta signaling through modulation of D-serine levels in cerebral cortex neurons // J Biol Chem. 2012. Vol. 287, № 49. P. 41432-41445.
  17. Diniz L.P., Tortelli V., Garcia M.N. et al. Astrocyte transforming growth factor beta 1 promotes inhibitory synapse formation via CaM kinase II signaling // Glia. 2014. Vol. 62, № 12. P. 1917-1931.
  18. Edmonson C., Ziats M.N., Rennert O.M. Altered glial marker expression in autistic post-mortem prefrontal cortex and cerebellum // Mol Autism. 2014. Vol. 5. P. 3.
  19. Eroglu C., Allen N.J., Susman M.W. et al. Gabapentin receptor alpha2delta-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis // Cell. 2009. Vol. 139, № 2. P. 380-392.
  20. Farhy-Tselnicker I., van Casteren A.C.M., Lee A. et al. Astrocyte-Secreted Gglypican 4 regulates release of neuronal pentraxin 1 from axons to induce functional synapse formation // Neuron. 2017. Vol. 96, № 2. P. 428-453.
  21. Garcia O., Torres M., Helguera P. et al. A role for thrombospondin-1 deficits in astrocyte-mediated spine and synaptic pathology in Down’s syndrome // PLoS One. 2010. Vol. 5, № 12. P. 14200.
  22. Goritz C., Mauch D.H., Pfrieger F.W. Multiple mechanisms mediate cholesterol-induced synaptogenesis in a CNS neuron // Mol Cell Neurosci. 2005. Vol. 29, № 2. P. 190-201.
  23. Hama H., Hara C., Yamaguchi K., Miyawaki A. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes // Neuron. 2004. Vol. 41, № 3. P. 405-415.
  24. Han C., Chaineau M., Chen C.X. et al. Open science meets stem cells: A new drug discovery approach for neurodegenerative disorders // Front Neurosci. 2018. Vol. 12. P. 47.
  25. Han D., Jin J., Woo J., Min H., Kim Y. Proteomic analysis of mouse astrocytes and their secretome by a combination of FASP and Stage Tip-based, high pH, reversed-phase fractionation // Proteomics. 2014. Vol. 14, № 13. P. 1604-1609.
  26. Hanse E., Seth H., Riebe I. AMPA-silent synapses in brain development and pathology // Nat Rev Neurosci. 2013 Dec. Vol.14(12). P. 839-850. doi: 10.1038/nrn3642.
  27. Higashimori H., Schin C.S., Chiang M.S. et al. Selective deletion of astroglial FMRP dysregulates glutamate transporter GLT1 and contributes to fragile X syndrome phenotypes in Vivo // J Neurosci. 2016. Vol. 36. P. 7079-7094.
  28. Hodges J.L., Yu X., Gilmore A. et al. Astrocytic contributions to synaptic and learning abnormalities in a mouse model of fragile X syndrome // Biol Psychiatry. 2017. Vol. 82. P. 139-149.
  29. Irwin S.A., Patel B., Idupulapati M. et al. Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination // Am J Med Genet. 2001. Vol. 98. P. 161-167.
  30. Jawaid S., Kidd G.J., Wang J. et al. Alterations in CA1 hippocampal synapses in a mouse model of fragile X syndrome // Glia. 2018. Vol. 66. P. 789-800.
  31. John Lin C.C., Yu K., Hatcher A. et al. Identification of diverse astrocyte populations and their malignant analogs // Nat Neurosci. 2017. Vol. 20, № 3. P. 396-405.
  32. Karten B., Peake K.B., Vance J.E. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1-deficient mammalian cells // Biochim Biophys Acta. 2009. Vol. 1791, № 7. P. 659-670.
  33. Kucukdereli H., Allen N.J., Lee A.T. et al. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC // Proc Natl Acad Sci U S A. 2011. Vol. 108, № 32. P. 440-449.
  34. Li J., Vestergaard M., Obel C. et al. A nationwide study on the risk of autism after prenatal stress exposure to maternal bereavement // Pediatrics. 2009. Vol. 123. P. 1102-1107.
  35. Lioy D.T., Garg S.K., Monaghan C.E. et al. A role for glia in the progression of Rett’s syndrome // Nature. 2011. Vol. 475. P. 497-500.
  36. Lively S., Brown I.R. The extracellular matrix protein SC1/Hevin localizes to multivesicular bodies in Bergmann glial fibers in the adult rat cerebellum // Neurochem Res. 2010. Vol. 35, № 2. P. 315-322.
  37. Mauch D.H., Nagler K., Schumacher S. et al. CNS synaptogenesis promoted by glia-derived cholesterol // Science. 2001. Vol. 294, № 5545. P. 1354-1357.
  38. Maurin T., Zongaro S., Bardoni B. Fragile X. syndrome: from molecular pathology to therapy // Neurosci Biobehav Rev. 2014. Vol. 46. Pt. 2. P. 242-255.
  39. Meyer-Franke A., Kaplan M.R., Pfrieger F.W., Barres B.A. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture // Neuron. 1995. Vol. 15, № 4. P. 805-819.
  40. Miyazaki S., Hiraoka Y., Hidema S., Nishimori K. Prenatal minocycline treatment alters synaptic protein expression, and rescues reduced mother call rate in oxytocin receptor-knockout mice // Biochem Biophys Res Commun. 2016. Vol. 472. P. 319-323.
  41. Molofsky A.V., Kelley K.W., Tsai H.H. et al. Astrocyte-encoded positional cues maintain sensorimotor circuit integrity // Nature. 2014. Vol. 509, № 7499. P. 189-194.
  42. Murai K.K., Nguyen L.N., Irie F. et al. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling // Nat Neurosci. 2003. Vol. 6, № 2. P. 153-160.
  43. Nagler K., Mauch D.H., Pfrieger F.W. Glia-derived signals induce synapse formation in neurones of the rat central nervous system // J Physiol. 2001. Vol. 15, № 533. P. 665-679.
  44. Okabe Y., Takahashi T., Mitsumasu C. et al. Alterations of gene expression and glutamate clearance in astrocytes derived from an MeCP2-null mouse model of Rett syndrome // PLoS One. 2012. Vol. 7. e35354.
  45. Pacey L.K., Doering L.C. Developmental expression of FMRP in the astrocyte lineage: implications for fragile X syndrome // Glia. 2007. Vol. 55. P. 1601-1609.
  46. Piochon C., Kloth A.D., Grasselli G. et al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism // Nat Commun. 2014. Vol. 5. P. 5586.
  47. Risher W.C., Patel S., Kim I.H. et al. Astrocytes refine cortical connectivity at dendritic spines // Elife. 2014. Vol. 17. P. 3.
  48. Russo F.B., Freitas B.C., Pignatari G.C. et al. Modeling the Interplay Between Neurons and Astrocytes in Autism Using Human Induced Pluripotent Stem Cells // Biol Psychiatry. 2018. Vol. 83. P. 569-578.
  49. Sevin M., Lesca G., Baumann N. et al. The adult form of Niemann-Pick disease type C // Brain. 2007. Vol. 130. P. 120-133.
  50. Singh S.K., Stogsdill J.A., Pulimood N.S. et al. Astrocytes assemble thalamocortical synapses by bridging NRX1alpha and NL1 via hevin // Cell. 2016. Vol. 164. P. 183-196.
  51. Sudhof T.C. Neuroligins and neurexins link synaptic function to cognitive disease // Nature. 2008. Vol. 455, № 7215. P. 903-911.
  52. Sudhof T.C. Synaptic Neurexin Complexes: A molecular code for the logic of neural circuits // Cell. 2017. Vol. 171, № 4. P. 745-769.
  53. Tanasic S., Mattusch C., Wagner E.M. et al. Desipramine targets astrocytes to attenuate synaptic plasticity via modulation of the ephrinA3/EphA4 signalling // Neuropharmacology. 2016. Vol. 105. P. 154-163.
  54. Tang G., Gudsnuk K., Kuo S.H. et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits // Neuron. 2014. Vol. 83. P. 1131-1143.
  55. Ullian E.M., Sapperstein S.K., Christopherson K.S., Barres B.A. Control of synapse number by glia // Science. 2001. Vol. 291, № 5504. P. 657-661.
  56. van Deijk A.F., Camargo N., Timmerman J. et al. Astrocyte lipid metabolism is critical for synapse development and function in vivo // Glia. 2017. Vol. 65, № 4. P. 670-682.
  57. Voineagu I., Wang X., Johnston P. et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology // Nature. 2011. Vol. 474. P. 380-384.
  58. Wallingford J., Scott A.L., Rodrigues K., Doering L.C. Altered developmental expression of the astrocyte-secreted factors Hevin and SPARC in the fragile X mouse model // Front Mol Neurosci. 2017. Vol. 10. P. 268.
  59. Wei H., Zou H., Sheikh A.M. et al. IL-6 is increased in the cerebellum of autistic brain and alters neural cell adhesion, migration and synaptic formation // J Neuroinflammation. 2011. Vol. 8. P. 52.
  60. Xu X., Miller E.C., Pozzo-Miller L. Dendritic spine dysgenesis in Rett syndrome // Front Neuroanat. 2014. Vol. 8. P. 97.
  61. Yang Q., Feng B., Zhang K. et al. Excessive astrocyte-derived neurotrophin-3 contributes to the abnormal neuronal dendritic development in a mouse model of fragile X syndrome // PLoS Genet. 2012. Vol. 8. e1003172.
  62. Youssef E.A., Berry-Kravis E., Czech C. et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: FragXis phase 2 results // Neuropsychopharmacology. 2018. Vol. 43. P. 503-512.
  63. Zoghbi H.Y. Rett syndrome: what do we know for sure? // Nat Neurosci. 2009. Vol. 12. P. 239-240.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Швалев В.Н., Сосунов А.А., Челышев Ю.А., 2018

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).