Biocompatibility of barium-doped dicalcium phosphate dihydrate obtained via low-temperature synthesis for use in regenerative medicine

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

BACKGROUND: Synthetic materials based on calcium phosphate compounds (CPCs) are increasingly used in modern regenerative medicine to stimulate bone tissue regeneration. AIM: The work aimed to assess key parameters of biocompatibility in vitro, including the content of acidic compartments and reactive oxygen species production, during the interaction of human macrophages with low-temperature-synthesized barium doped dicalcium phosphate dihydrate under normal and lipopolysaccharide (LPS)-induced inflammatory conditions.

METHODS: Morphology and qualitative and quantitative elemental composition of dicalcium phosphate dihydrate (DCPD) powder and its barium-doped form (DCPD-Ba) were evaluated using scanning electron microscopy, infrared spectroscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Cell viability, lysosomal content, and reactive oxygen species production were assessed by flow cytometry after co-culturing primary human macrophages with DCPD and DCPD-Ba under both normal and LPS-stimulated conditions.

RESULTS: Barium-doped DCPD samples were synthesized using a low-temperature method at Ba²⁺ concentrations of 1%, 5%, and 10% of the theoretically possible substitution level (theor.%). For each variant, the calculated actual substitution percentage amounted to 0.62, 1.43, and 6.43 atomic %, respectively. X-ray diffraction analysis confirmed complete transformation of the initial α-tricalcium phosphate into DCPD at all Ba2+ concentrations. The infrared spectroscopy data validated the conformity of DCPD structure to the reference standard across all Ba2+ doping levels. Doping with Ba2+ ions has been found to enhance the hydration activity of DCPD and cause deformation of its crystal structure. The results of in vitro studies indicate that substitution of Ca2+ with Ba2+ in the DCPD structure does not affect the cytotoxic properties of the material. Furthermore, DCPD-Ba did not suppress lysosomal biogenesis and promoted reactive oxygen species production in non-activated macrophages, whereas suppressing reactive oxygen species production under LPS-induced inflammatory conditions.

CONCLUSION: Thus, both DCPD and its Ba substituted variants represent promising candidates for incorporation into materials intended for regenerative medicine. The proposed low temperature synthesis of Ba2+-substituted DCPD is of considerable interest for the development of specialized osteoplastic CPC based materials. The most effective DCPD variant, with the highest Ca2+-to-Ba2+ substitution level (6.43 atomic %), demonstrated potential regulatory activity on activated macrophages (i.e., under inflammatory conditions). This property may be of critical importance for modulating the immune response and promoting effective osteointegration of the material in the recipient’s body.

Sobre autores

Polina Smirnova

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: smirnova-imet@mail.ru
ORCID ID: 0000-0002-5437-7052
Código SPIN: 5022-2890
Rússia, Moscow

Anastasia Teterina

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: teterina_imet@mail.ru
ORCID ID: 0009-0005-1405-2607
Código SPIN: 5514-8643

Cand. Sci. (Engineering)

Rússia, Moscow

Igor Smirnov

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: baldyriz@gmail.com
ORCID ID: 0000-0003-3602-0276
Código SPIN: 3680-5330
Rússia, Moscow

Vladislav Minaychev

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: vminaychev@gmail.com
ORCID ID: 0000-0002-8498-4566
Código SPIN: 9217-1374

Cand. Sci. (Biology)

Rússia, Moscow; Pushchino

Pavel Salynkin

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: salynkin.p.s@gmail.com
ORCID ID: 0009-0002-0959-8072
Código SPIN: 2594-8099
Rússia, Pushchino

Margarita Kobyakova

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kobyakovami@gmail.com
ORCID ID: 0000-0002-6846-9994
Código SPIN: 5611-8437
Rússia, Moscow; Pushchino

Kira Pyatina

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: kirapyatina01@gmail.com
ORCID ID: 0009-0003-0194-6922
Código SPIN: 2935-4432
Rússia, Moscow; Pushchino

Elena Meshcheriakova

Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Email: elena.mesh2311@gmail.com
ORCID ID: 0009-0001-6148-5211
Código SPIN: 6332-6772
Rússia, Pushchino

Irina Fadeeva

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences; Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: fadeeva.iteb@gmail.com
ORCID ID: 0000-0002-1709-9970
Código SPIN: 6475-1023

Cand. Sci. (Biology)

Rússia, Moscow; Pushchino

Sergey Barinov

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: barinov_s@mail.ru
ORCID ID: 0000-0003-4544-2817
Código SPIN: 5876-1906
Scopus Author ID: 7004365385

Dr. Sci. (Engineering), Professor

Rússia, Moscow

Vladimir Komlev

Baikov Institute of Metallurgy and Materials Science of the Russian Academy of Sciences

Email: komlev@mail.ru
ORCID ID: 0000-0003-2068-7746
Código SPIN: 2668-0066

Dr. Sci. (Engineering), Professor

Rússia, Moscow

Bibliografia

  1. Navarro M, Aparicio C, Charles-Harris M, et al. Development of a biodegradable composite scaffold for bone tissue engineering: physicochemical, topographical, mechanical, degradation, and biological properties. In: Julius Vancso G, editor. Ordered polymeric nanostructures at surfaces. Heidelberg: Springer Berlin; 2006. P:209–231. doi: 10.1007/12_068
  2. Bose S, Fielding G, Tarafder S, Bandyopadhyay A. Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 2013;31(10):594–605. doi: 10.1016/j.tibtech.2013.06.005
  3. Liu S, Lin Z, Qiao W, et al. Cross-talk between biometal ions and immune cells for bone repair. Engineered Regeneration. 2024;5:375–408. doi: 10.1016/j.engreg.2024.01.003 EDN: VJRRDN
  4. Goldberg MA, Krohicheva PA, Fomin AS, et al. In situ magnesium calcium phosphate cements formation: From one pot powders precursors synthesis to in vitro investigations. Bioact Mater. 2020;5(3):644–658. doi: 10.1016/j.bioactmat.2020.03.011 EDN: CFYWUC
  5. Teterina AY, Smirnov IV, Fadeeva IS, et al. Octacalcium phosphate for bone tissue engineering: synthesis, modification, and in vitro biocompatibility assessment. Int J Mol Sci. 2021;22(23):12747. doi: 10.3390/ijms222312747 EDN: LUUCKM
  6. Golubchikov D, Evdokimov P, Zuev D, et al. Three-dimensional-printed molds from water-soluble sulfate ceramics for biocomposite formation through low-pressure injection molding. Materials (Basel). 2023;16(8):3077. doi: 10.3390/ma16083077 EDN: JFVLIL
  7. Kovrlija I, Locs J, Loca D. Incorporation of barium ions into biomaterials: dangerous liaison or potential revolution? Materials. 2021;14(19):5772. doi: 10.3390/ma14195772 EDN: YDFSQT
  8. Oskarsson A. Barium. In: Nordberg GF, Fowler BA, Nordberg M, editors. Handbook on the toxicology of metals. 4th edition. Academic Press (Elsevier); 2015. P:625–634. doi: 10.1016/B978-0-444-59453-2.00029-9
  9. Kravchenko J, Darrah TH, Miller RK, et al. A review of the health impacts of barium from natural and anthropogenic exposure. Environ Geochem Health. 2014;36(4):797–814. doi: 10.1007/s10653-014-9622-7 EDN: YBTVCE
  10. U.S. Environmental Protection Agency. Toxicological review of barium and compounds [Internet]. In: Support of Summary Information on the Integrated Risk Information System (IRIS); EPA: Washington: Integrated Risk Information System (IRIS), 1998 [cited 03 June 2025]. Available at: https://iris.epa.gov/static/pdfs/0010tr.pdf
  11. Emsley J. Nature’s building blocks: an A-Z guide to the elements. Oxford: Oxford University Press; 2011. ISBN: 9780199605637
  12. Poddalgoda D, Macey K, Assad H, Krishnan K. Development of biomonitoring equivalents for barium in urine and plasma for interpreting human biomonitoring data. Regul Toxicol Pharmacol. 2017;86:303–311. doi: 10.1016/j.yrtph.2017.03.022
  13. Majumdar S, Hira SK, Tripathi H, et al. Synthesis and characterization of barium-doped bioactive glass with potential anti-inflammatory activity. Ceramics International. 2021;47(5):7143–7158. doi: 10.1016/j.ceramint.2020.11.068 EDN: RVTMIR
  14. Liu H, Zhang Z, Gao C, et al. Enhancing effects of radiopaque agent BaSO4 on mechanical and biocompatibility properties of injectable calcium phosphate composite cement. Mater Sci Eng C Mater Biol Appl. 2020;116:110904. doi: 10.1016/j.msec.2020.110904 EDN: JWQYPT
  15. Arepalli SK, Tripathi H, Vyas VK, et al. Influence of barium substitution on bioactivity, thermal and physico-mechanical properties of bioactive glass. Mater Sci Eng C Mater Biol Appl. 2015;49:549–559. doi: 10.1016/j.msec.2015.01.049 EDN: YFCBKH
  16. Li G, Zhang G, Sun R, Wong CP. Mechanical strengthened alginate/ polyacrylamide hydrogel crosslinked by barium and ferric dual ions. J Mater Sci. 2017;52:8538–8545. doi: 10.1007/s10853-017-1066-x EDN: FZUBOL
  17. Gasa JV, Weiss RA, Shaw MT. Ionic crosslinking of ionomer polymer electrolyte membranes using barium cations. Journal of Membrane Science. 2007;304(1–2):173–180. doi: 10.1016/j.memsci.2007.07.031 EDN: KKJQWR
  18. Zellermann AM, Bergmann D, Mayer C. Cation induced conformation changes in hyaluronate solution. European Polymer Journal. 2013;49(1):70–79. doi: 10.1016/j.eurpolymj.2012.09.025 EDN: YDHPKP
  19. Alizadeh Sardroud H, Nemati S, Baradar Khoshfetrat A, et al. Barium-cross-linked alginate-gelatine microcapsule as a potential platform for stem cell production and modular tissue formation. J Microencapsul. 2017;34(5):488–497. doi: 10.1080/02652048.2017.1354940
  20. Machida-Sano I, Hirakawa M, Namiki H. Cell compatibility of three-dimensional porous barium-cross-linked alginate hydrogels. Journal of Scientific Research and Reports. 2014;3(20):2611–2621. doi: 10.9734/JSRR/2014/12407
  21. Huang TY, Su WT, Chen PH. Comparing the Effects of chitosan scaffolds containing various divalent metal phosphates on osteogenic differentiation of stem cells from human exfoliated deciduous teeth. Biol Trace Elem Res. 2018;185(2):316–326. doi: 10.1007/s12011-018-1256-7 EDN: HUVVYH
  22. Rocca A, Marino A, Rocca V, et al. Barium titanate nanoparticles and hypergravity stimulation improve differentiation of mesenchymal stem cells into osteoblasts. Int J Nanomedicine. 2015;10:433–445. doi: 10.2147/IJN.S76329 EDN: URKZAH
  23. Mores L, França EL, Silva NA, et al. Nanoparticles of barium induce apoptosis in human phagocytes. Int J Nanomedicine. 2015;10:6021–6026. doi: 10.2147/IJN.S90382 EDN: VGXKWR
  24. Schroeder HA, Tipton IH, Nason AP. Trace metals in man: Strontium and barium. J Chronic Dis. 1972;25(9):491–517. doi: 10.1016/0021-9681(72)90150-6
  25. Lomovskaya YV, Kobyakova MI, Senotov AS, et al. Macrophage-like THP-1 cells derived from high-density cell culture are resistant to TRAIL-induced cell death via down-regulation of death-receptors DR4 and DR5. Biomolecules. 2022;12(2):150. doi: 10.3390/biom12020150 EDN: YAYKAX
  26. Chen Y, Liu Z, Jiang T, et al. Strontium-substituted biphasic calcium phosphate microspheres promoted degradation performance and enhanced bone regeneration. J Biomed Mater Res. 2020;108(4):895–905. doi: 10.1002/jbm.a.36867
  27. Minaychev VV, Smirnova PV, Kobyakova MI, et al. Low-temperature calcium phosphate ceramics can modulates monocytes and macrophages inflammatory response in vitro. Biomedicines. 2024;12(2):263. doi: 10.3390/biomedicines12020263 EDN: TQUFDT
  28. Sabido O, Figarol A, Klein JP, et al. Quantitative flow cytometric evaluation of oxidative stress and mitochondrial impairment in RAW 264.7 macrophages after exposure to pristine, acid functionalized, or annealed carbon nanotubes. Nanomaterials (Basel). 2020;10(2):319. doi: 10.3390/nano10020319 EDN: HSJLCT
  29. Okamoto K, Takayanagi H. Osteoimmunology. Cold Spring Harb Perspect Med. 2019;9(1):a031245. doi: 10.1101/cshperspect.a031245
  30. Zhao T, Chu Z, Ma J, Ouyang L. Immunomodulation effect of biomaterials on bone formation. J Funct Biomater. 2022;13(3):103. doi: 10.3390/jfb13030103 EDN: XGMGIY
  31. Yang Y, Chu C, Xiao W, et al. Strategies for advanced particulate bone substitutes regulating the osteo-immune microenvironment. Biomed Mater. 2022;17(2). doi: 10.1088/1748-605X/ac5572 EDN: AWKWKK
  32. Volkov AV. Morphology of reparative osteogenesis and osseointegration in maxillofacial surgery [dissertation]. Moscow; 2019. Available at: https://www.dissercat.com/content/morfologiya-reparativnogo-osteogeneza-i-osteointegratsii-v-chelyustno-litsevoi-khirurgii (In Russ.)
  33. Minaychev VV. Cellular and tissue aspects of the biocompatibility of calcium-phosphate compounds obtained through by low-temperature synthesis [dissertation]. Pushchino; 2024. Available at: https://www.dissercat.com/content/kletochnye-i-tkanevye-aspekty-biosovmestimosti-kaltsii-fosfatnykh-soedinenii-poluchennykh (In Russ.) EDN: HGMSQR
  34. Pankratov AS, Fadeeva Is, Minaychev VV, et al. A biointegration of microand nanocrystalline hydroxyapatite: problems and perspectives. Genes & Cells. 2018;13(3):46–51. doi: 10.23868/201811032 EDN: VUGEKS
  35. Minaychev VV, Teleshev AT, Gorshenev VN, et al. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite. IOP Conf Ser: Mater Sci Eng. 2018;347:012045. doi: 10.1088/1757-899X/347/1/012045 EDN: RYGMEL
  36. Terkawi MA, Matsumae G, Shimizu T, et al. Interplay between inflammation and pathological bone resorption: insights into recent mechanisms and pathways in related diseases for future perspectives. Int J Mol Sci. 2022;23(3):1786. doi: 10.3390/ijms23031786 EDN: DKWORK
  37. Ponzetti M, Rucci N. Updates on osteoimmunology: What’s new on the cross-talk between bone and immune system. Front Endocrinol (Lausanne). 2019;10:236. doi: 10.3389/fendo.2019.00236 EDN: GOFNBJ
  38. Takayanagi H. Osteoimmunology: Shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol. 2007;7(4):292–304. doi: 10.1038/nri2062

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. X-ray diffraction analysis of barium-doped dicalcium phosphate dihydrate powders at 1%, 5%, and 10% of the theoretically possible substitution level: DCPD, dicalcium phosphate dihydrate; DCPD-Ba, barium-substituted dicalcium phosphate dihydrate. X-axis: 2θ (degrees), Y-axis: intensity (relative units).

Baixar (117KB)
3. Fig. 2. Infrared spectroscopy of barium-doped dicalcium phosphate dihydrate powders at 1%, 5%, and 10% of the theoretically possible substitution level: DCPD, dicalcium phosphate dihydrate; DCPD-Ba, barium-substituted dicalcium phosphate dihydrate.

Baixar (165KB)
4. Fig. 3. Scanning electron microscopy of dicalcium phosphate dihydrate powders: a, original (undoped) dicalcium phosphate dihydrate; b, dicalcium phosphate dihydrate doped with 1% Ba²⁺ theoretical substitution level; c, dicalcium phosphate dihydrate doped with 5% Ba²⁺; d, dicalcium phosphate dihydrate doped with 10% Ba²⁺.

Baixar (356KB)
5. Fig. 4. Cytotoxic effect of calcium phosphate compounds on human macrophages: DCPD, dicalcium phosphate dihydrate; DCPD-Ba, DCPD doped with Ba²⁺ at 1%, 5%, or 10% of the theoretical substitution level. a, percentage of viable cells relative to control after 72 h of incubation with various concentrations (10, 3, 1, 0.3, 0.1 mg/mL) of the tested calcium phosphate compounds; b, percentage of viable cells relative to control after 72 h of incubation with 10 mg/mL of DCPD or DCPD-Ba; c, percentage of viable cells relative to control after 72 h of incubation with 3 mg/mL of DCPD or DCPD-Ba; ** p < 0.01 compared with the control.

Baixar (209KB)
6. Fig. 5. Acidic compartment content in human macrophages after incubation with calcium phosphate compounds: DCPD, dicalcium phosphate dihydrate; DCPD-Ba, DCPD doped with Ba²⁺ at 1%, 5%, or 10% of the theoretical substitution level. The Y-axis shows the mean fluorescence intensity of LysoTracker Green in cells, scale: ×106; ** p < 0.01 compared with the control group.

Baixar (117KB)
7. Fig. 6. Production of reactive oxygen species in human macrophages after incubation with calcium phosphate compounds: DCPD, dicalcium phosphate dihydrate; DCPD-Ba, DCPD doped with Ba²⁺ at 1%, 5%, or 10% of the theoretical substitution level; LPS–, macrophages under standard (non-activated) culture conditions; LPS+, macrophages pre-incubated with lipopolysaccharide (activated); * p < 0.05, ** p < 0.01 compared with the control group without lipopolysaccharide; # p < 0.05, ## p < 0.01 compared with the control group with lipopolysaccharide.

Baixar (121KB)

Declaração de direitos autorais © Eco-Vector, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».