Tensors with Constant Components in the Constitutive Equations of a Hemitropic Micropolar Solids
- 作者: Radayev Y.N.1
-
隶属关系:
- Ishlinsky Institute for Problems in Mechanics RAS, 119526, Moscow, Russia
- 期: 编号 5 (2023)
- 页面: 98-110
- 栏目: Articles
- URL: https://ogarev-online.ru/1026-3519/article/view/137551
- DOI: https://doi.org/10.31857/S057232992370006X
- EDN: https://elibrary.ru/PHNOCG
- ID: 137551
如何引用文章
全文:
详细
The present paper is devoted to elastic potentials and the constitutive equations of mechanics of anisotropic micropolar solids, the kinematics of which can be specified by two independent vector fields: a contravariant field of translational displacements and a contravariant pseudovector field of microrotations of weight +1. The quadratic stress potential is represented by three constitutive tensors of the fourth rank, two of which are pseudotensor in nature and can be assigned weights –2 and –1. Such a solid is completely specified by the 171st micropolar elastic modulus. The main attention is focused on the model of a hemitropic (half-isotropic, demitropic) micropolar elastic solid characterized by nine constitutive constants. The components of the constitutive pseudo-tensor of weight ‒1 turn out to be sensitive to mirror reflection transformations in three-dimensional space. A peculiar algebraic structure of the constitutive tensors of a hemitropic solid, more precisely, their absolute analogues obtained by multiplying by integer powers of a pseudoscalar unity, is studied. It is shown that these tensors can always be constructed from isomers (isomer) of a tensor with constant components (generally insensitive to any transformations of the coordinate system) and one additional fourth-rank tensor constructed, in turn, from the components of the metric tensor.
作者简介
Yu. Radayev
Ishlinsky Institute for Problems in Mechanics RAS, 119526, Moscow, Russia
编辑信件的主要联系方式.
Email: radayev@ipmnet.ru
Россия, Москва
参考
- Парс Л.А. Аналитическая динамика. М.: Наука, 1971. 636 с.
- Cosserat E., Cosserat F. Théorie des corps déformables. Paris: Herman et Fils, 1909. 226 p.
- Nowacki W. Theory of asymmetric elasticity. Oxford: Pergamon Press, 1986. 383 p.
- Гуревич Г.Б. Основы теории алгебраических инвариантов. М., Л.: Гостехтеоретиздат. 1948. 408 с.
- Радаев Ю.Н. Правило множителей в ковариантных формулировках микрополярных теорий механики континуума // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2018. Т. 22. № 3. С. 504–517. https://doi.org/10.14498/vsgtu1635
- Kovalev V.A., Murashkin E.V., Radayev Y.N. On the Neuber theory of micropolar elasticity. A pseudotensor formulation // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2020. Т. 24. № 4. С. 752–761. https://doi.org/10.14498/vsgtu1799
- Murashkin E.V., Radayev Y.N. An algebraic algorithm of pseudotensors weights eliminating and recovering // Mech. Solids. 2022. V. 57. № 6. P. 1416–1423. https://doi.org/10.3103/s0025654422060085
- Murashkin E.V., Radaev Y.N. On theory of oriented tensor elements of area for a micropolar continuum immersed in an external plane space // Mech. Solids. 2022. V. 57. № 2. P. 205–213. https://doi.org/10.3103/s0025654422020108
- Мурашкин Е.В., Радаев Ю.Н. К теории гемитропных тензоров четвертого ранга в трехмерных пространствах Евклида // Вестн. Сам. гос. техн. ун-та. Сер. Физ.-мат. науки. 2022. Т. 26. № 3. С. 592–602. https://doi.org/10.14498/vsgtu1941
- Мурашкин Е.В., Радаев Ю.Н. О двух основных естественных формах потенциала асимметричных тензоров силовых и моментных напряжений в механике гемитропных тел // Вестн. Чув. гос. пед. универс. им. И.Я. Яковлева. Серия: мех. предельного состояния. 2022. № 3. С. 86–100. https://doi.org/10.37972/chgpu.2022.53.3.010
- Jeffreys H. Cartesian tensors. Cambridge: Cambridge University Press, 1969. 93 p.
- Radayev Y.N. Two-point rotations in geometry of finite deformations // Theory of Elasticity and Creep. Advanced Structured Materials. V. 185. Springer, 2023. P. 275–283. https://doi.org/10.1007/978-3-031-18564-9_20
补充文件
