ВЛИЯНИЕ ПАРАМЕТРОВ КАВИТАТОРА И СОПЛА НА ЭФФЕКТИВНОСТЬ РАБОТЫ ГЕНЕРАТОРА ИМПУЛЬСНЫХ СТРУЙ

Обложка

Цитировать

Полный текст

Аннотация

Для создания генератора периодических импульсных струй используется режим кавитационных автоколебаний в гидравлической системе, содержащей вентилируемую каверну с отрицательным числом кавитации. Исследовано влияние параметров кавитатора и выходного сопла генератора на интенсивность ударного воздействия истекающей жидкости на экран, расположенный перпендикулярно направлению истечения струй. Получено, что увеличение длины сопла может значительно увеличить эффективность генератора, а плавное сужение канала перед кавитатором может способствовать увеличению рабочего диапазона генератора в сторону бо́льших поддувов газа. Показано, что имеет место масштабный эффект – с ростом давления напора жидкости относительная интенсивность автоколебаний падает, однако имеет тенденцию к выходу на горизонтальную асимптоту.

Об авторах

С. А. Очеретяный

МГУ им. М.В. Ломоносова, Научно-исследовательский институт механики

Email: ocheret@imec.msu.ru
Россия, Москва

В. В. Прокофьев

МГУ им. М.В. Ломоносова, Научно-исследовательский институт механики

Автор, ответственный за переписку.
Email: vlad.prokof@yandex.ru
Россия, Москва

Список литературы

  1. Козлов И.И., Прокофьев В.В. Закономерности развития волн на поверхности каверны с отрицательным числом кавитации // Доклады РАН. 2006. Т. 409. № 1. С. 43–47.
  2. Козлов И.И., Очеретяный С.А., Прокофьев В.В. Автоколебательные режимы в жидкой струйной завесе, разделяющей газовые области с различными давлениями // Изв. РАН МЖГ. 2013. № 6. С. 33–43.
  3. Очеретяный С.А., Прокофьев В.В. Влияние сужения сопла на работу генератора периодических импульсных струй // Изв. РАН МЖГ. 2022. № 2. С. 14–26.
  4. Семко А.Н. Импульсные струи жидкости высокой скорости и их применение: монография / Под общ. ред. А.Н. Семко. Донецк: ДонНУ. 2014. 370 с.
  5. Atanov G.A., Semko A.N. Numerical Analysis of the Jet Flows of Compressible Water // Proc. of International Summer Scientific School “High Speed Hidrodynamics”. June 2004, Cheboksary. Computational Publications. Russia. 2004. P. 39–44.
  6. Савченко Н.В., Яхно О.М. Гидродинамические способы создания пульсирующих струй для гидроразрушения твердых материалов // Вестник Сумского гос. ун-та. Сер. Технические науки. 2003. № 12 (58). С. 92–98.
  7. Шкапов П.М., Благовещенский И.Г., Гартиг Е.Б., Дорошенко С.А. О гистерезисном характере развития автоколебаний в гидролинии с ограниченной искусственной газовой каверной на выходе // Наука и образование. Электронное науч.-техн. изд. МГТУ им. Н.Э. Баумана. 2013. № 10. С. 1–10.
  8. Прокофьев В.В., Очеретяный С.А., Яковлев Е.А. Использование кавитационных автоколебательных режимов для генерации периодических импульсных струй // ПМТФ. 2021. Т. 62. № 1. С. 97–108.
  9. Идельчик И.Е. Справочник по гидравлическим сопротивлениям / Под ред. И.Е. Идельчик. М.–Л.: Госэнергоиздат, 1960. 464 с.

© Российская академия наук, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).