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Abstract. The stability of spatially periodic flows of homogeneous and stratified fluid is
investigated with regard for bottom friction. The Galerkin method with three basis Fourier
harmonics is used to solve the stability problem. A system of ordinary differential equations
for the amplitudes of the Fourier harmonics is formulated. A solution to the linearized version
of the system is obtained and an expression for the increment of disturbance growth is found.
It is established that at the nonlinear stage of development the exponential growth of linear
disturbances is replaced by the regime of establishing steady-state periodic disturbances in
form of closed cells. These disturbances reduce the averaged horizontal velocity of the flow.
Analytical expressions for the spatial period and amplitude of steady-state disturbances are

obtained.
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INTRODUCTION
Extensive literature is devoted to research of hydrodynamic instability of geophysical

currents (a large list of publications in [1-3]). The development of instability is associated


mailto:kalashnik-obn@mail.ru

with the formation of atmospheric cyclones, synoptic vortices in the ocean, ordered vortex
tracks, etc.

In this work, the stability of spatially periodic flows of homogeneous and stratified fluid
taking into account bottom friction is investigated. The Galerkin method with three basis
Fourier-harmonics is used for the solution of the stability problem. A system of ordinary
differential equations for the amplitudes of the Fourier-harmonics is formulated. On the basis
of the numerical solution of this system, it was shown in previous works that in the
frictionless model the development of instability of flows leads to the establishment of a
regime of unsteady oscillations or shafts. In this work it is shown that the situation changes
fundamentally when friction is taken into account. Exponential growth of linear perturbations
at the nonlinear stage of development is replaced by the regime of establishment of stationary
periodic perturbations in space. These perturbations decrease the averaged horizontal flow
velocity. Analytical expressions for the spatial period and amplitude of perturbations are

obtained.

1. PERIODIC FLOW IN A MODEL OF A MONOTONOUS FLUID

We consider two-dimensional motions of a homogeneous incompressible viscous fluid
with characteristic horizontal scale D and velocity U, in the presence of an external forcef .

The dimensionless variables of the motion are described by the equation
(AW); + Wu(By), — v (By), = R (8% + f). (1.1)
Here vy is the current function, ,u= -y v =y, are velocity components, R=UyD/v is the

Reynolds number, v is the kinematic toughness coefficient, A — is the Laplace operator. As
scales of coordinates, time and current function are taken respectively D, D/U,, UyD,
amplitude of external force fy = vU, / D?.

The system of equations (1.1) has an exact solution

vy =¥(y)=sny,u=U(y) = —cosy, (1.2)

describing a stationary spatially periodic flow excited by an external periodic forcef = —siny .
This flow is called "Kolmogorov flow". The flow (1.2) is an exact solution of (1.1) and in the
absence of toughness R~ = 0 (non-viscous Kolmogorov flow).

Currents (1.2) are reproduced quite well by the magnetohydrodynamic method in
laboratory experiments with a conducting fluid [4-7]. Analogs of such currents can also be
created in natural conditions, for example, under the action of periodic distribution of wind

tangential voltage in the ocean or external heat inflows in the atmosphere.



The problem on the stability of the flow (1.2) in a viscous fluid was first posed by A. N.
Kolmogorov in 1960. A year later, a linear version of the problem obtained a solution in the
famous paper [7]. For research of linear stability in this work, the apparatus of the chain
fraction theory was used to determine the minimum critical value of the Reynolds number and
the wavelength of the most dangerous perturbation. The high degree of symmetry and the
possibility of laboratory modeling of the Kolmogorov flow (1.2) stimulated numerous
theoretical researches of its stability in the presence of a series of complicating factors
(friction, beta effect, stratification) [8-15]. A long-wave approach to the research of nonlinear
stability of the Kolmogorov flow using integral solvability conditions for periodic
perturbations was proposed in [16, 17]. Using this approach, a weakly nonlinear stability
theory was developed that is valid for small deviations of the Reynolds numberR from the
critical value. A review of publications devoted to research on the stability of the Kolmogorov
flow is presented in [4] and article [22].

The linear dynamics of perturbations at large values of the Reynolds number was
studied in the mentioned article [7] and in [15]. The nonlinear dynamics of perturbations of
Kolmogorov flow in the absence of friction (R = «) was studied in recent papers [15, 17]. In
this work, we consider an approach to describe the nonlinear dynamics of perturbations at
finite values of the Reynolds number. This approach uses the Galerkin method with three
basis trigonometric functions and time-dependent perturbation amplitudes. It is shown that the
time behavior of the perturbation amplitudes is described by a system of three nonlinear
differential equations. It is found that in the model with friction the exponential growth of
linear perturbations of the Kolmogorov flow is replaced by the regime of establishment of
stationary periodic perturbations in the form of closed cells. These perturbations lead to
meandering of the flow and reduce its mean velocity. Analytical expressions for the spatial

period and amplitude of perturbations are obtained.

2. GALERKIN METHOD AND LINEAR STABILITY THEORY

Representing in (1.1) v = ¥(y) + y’', to describe the dynamics of small perturbations
ofy’ stationary non-viscous flow (1.2) we obtain the equation
(Ay'); — (Ay' + y'), cosy = RA%y. (2.1)
In [7] exponentially increasing with time and periodic in coordinatey solutions of
equation (2.1), represented by a series of trigonometric functions cos(ny),sin(ny) were found.
Finding the increment of acceleration was reduced to the analysis of a rather cumbersome

algebraic equation containing an infinite chain fraction.



A simplified approach to constructing solutions to equation (2.1) is based on the

Galerkin method with three basis functions f(y) =1, f,(y) = cosy, f3(y) = siny (the first three
2n
terms of trigonometric series). We denote by angle brackets (¢) = (27:)_1 Io ¢ dy the operation

of averaging over the period2r of the background flow and write equation (2.1) in symbolic
form L(y’) = 0. In accordance with the Galerkin method, we find an approximate solution of
equation (2.1) in the form (we omit the dash at perturbations)
v = A(x,t)cosy + B(x,t)sin y + C(x,t). (2.2)

We find the expansion coefficients from the orthogonality conditions |,

< fi( y)L(\y)> =0i =1,23. Thus, we obtain a system of equations for the expansion coefficients
(A= A), = (Ca + C), = R (Agx = 2A5 + A) , G- (12)A = R'Cy . (2.3)

These equations are joined by an isolated equation
(Box = B), = R (Byx — 2By + B), (2.4)
having only damped solutions over time, in particular B = 0.

Finding solutions to equations (2.3) of the form A = gye"! cos(kx), C = &' sin(kx) leads

to the equation for the square for the incremental rise A
(K2 +1)22 + R (K2 +1)( 262 +1) + R2K (k2 + 1)2 +(Y2K2 (K2 -1)=0.  (25)

Equating the free term of equation (2.5) to zero, we obtain the equation of the neutral
stability curve on the parameter plane(k, R) . This curve separates the growing solutions(: > 0)
from the damped solutions(i < 0) and is described by the equation
K2 11
-

Formula (2.6) gives an excellent approximation of the neutral curve equation obtained

R=R,(k)=+/2 (2.6)

by the chain fraction theory method in [7]. According to this formula, instability exists if
R > /2, and the interval of wave numbers of unstable modes lies inside the interval 0 < k < 1.
Note that according to (2.5) , in the absence of friction (R"' =0 ) the square of the
accretion increment A2 = (1/2) k2 (1 - k2) / (1 + k2) . According to this expression, the long-wave
perturbations with 0 < k? <1 are exponentially increasing. The most dangerous perturbation
with the maximum increment corresponds to the wave number k = k,, = \/\/57— ~ 0,64 . The

dynamics of linear and nonlinear perturbations in the absence of friction has been studied in

detail in our recent works [18, 20].



3. NONLINEAR DYNAMICS OF PERTURBATIONS OF PERIODIC FLOW OF
HOMOGENEOUS FLUID

The results of the linear analysis suggest that the Galerkin method will give a good
approximation of solutions in the nonlinear case as well. For the flow (1.2), the nonlinear
dynamics of perturbations is described by Eq.

(Ay") = (Ay” + '), cosy + wi(Ay'), — wi(Ay'), = RA%y! (3.1)

We will look for an approximate solution of (3.1) in the form (2.2). Substituting (2.2)
into (3.1) and using the orthogonality conditions to the system of functionsf;(y), we obtain the
following nonlinear equation system of partial differential equations for determining the
expansion coefficients

(A= Ay), +(Co + ), +(B = Bey)Cy + By = ~R ™ (Agx =~ 2A, + A),
(B~ By), (A= A)Cy — ACyee = ~R" (Bygee ~ 2By + B).
G - (12) A, - (V2)(BA, - AB,) = R'C,,. (3.2)
Here the first two equations (3.2) are multiplied by —1 for simplicity. The linear version of the
system (3.2) reduces to (2.3), (2.4). Note that for the variable C the Galerkin method gives the
equation Cyy — (V2)((B+ 1A, — A(B +1),) = R 'Cyyy. The third equation (3.2) is obtained
from this equation by lowering the order.

Assuming B = B, — 1 and considering that B, = B(t) depends only on time, let us write

the system (3.2) in the form of
(A= Ag), + Bi(Cyp + ), =R (Ao — 2 + A,
(B~ (A~ A )G, ~ ACy = R (B 1),
G - (1/2)81(t)Ax = R_1Cxx (3.3)

Now we assume

A = g(t)cos(kx), C = ((t)sin(kx), B; = b(t)
Substituting these expressions into (3.3) leads to a system of nonlinear ordinary
differential equations with respect to amplitudes a = a(t),c = c(t), b = b(t)
at(t)(1 + k2) + bc(t)k(1 - k2) - R (k2 + 1)2 a,
b - (12)kac = —-R'(b- 1),

G + (1/2)kab(t) = -R 'k%c.. (3.4)



Here the lower letter indexes denote partial derivatives in time. The mean equation (3.4)

follows from the equation(b); — (1 + kz)kaccos2 x + ack®cos? x = 0 , after applying the formulae

of degree reduction. The rest of the equations are exact.
The case with absence of friction was considered in our previous works [18, 20]. In this
case the system (3.4) is reduced to a nonlinear system
a(t)(1+ k2 + bot)k(1-k?*) =0, b —(Y2)kac=0, ¢ +(1/2)kab(t)=0 .

The laws of conservation follow from this system

%(bz + 02) - 0%(9(k)a2 Y. c2) =0,

where g(k) = (1 + kz) / (1 - k2) . Using these laws allows us to represent the solution of the

system in terms of elliptic functions. This solution describes nonlinear oscillations or
vascillations. An example of the numerical solution of the system (3.4) in the case of R = 0
for the value k = 0. 5 is presented in Fig.1. As calculations show, at values of R close to zero,
damped oscillations with time take place. A completely different behavior is observed in the
model with friction at small but finite values of Reynolds number R. In this case, instead of
oscillations, the regime of establishment of stationary spatially periodic flows is realized. Let
us dwell on this regime in more detail.

It is easy to see that the stationary version of the system (3.4) in the model with friction
2
bok(1- k) + R(K2 +1] a=0,

~(1Y2)kac+ R '(b—1) = 0,

(1/2)kab+ R 'k*c =0, (3.5)
has an exact stationary solution. Indeed, from the last equation (3.5) follows
_ (12)kab
B R 2 (3.6)

Substituting this expression into the first equation (3.5) after reduction by a and simple
transformations, we obtain b? = 2
R (k% +1)

N

Substituting (3.7) into the third equation (3.5) we obtain

b=+2 (3.7)

a=+2R b -1 (3.8)
Expressions (3.6)-(3.8) uniquely define two fixed stationary points of the system (3.4).



Numerical calculations show that the data fixed points are stable. Regardless of the
choice of initial conditions, all solutions tend to one of the two fixed points. An example of
numerical solution of the nonlinear system (3.4) is presented in Fig. 2.

The coordinates of the fixed points agree well with expressions (3.6)-(3.8). In particular
at k=05 R'=0.1the theoretical limits of (3.6)-(3.8) are: b= 0.2054, a = -0.39, c = 0.806.
These values practically coincide with the values in the numerical calculation.

The proof of stability of fixed points can be done using a system for linear
approximation. Let us denote the coordinates of the fixed points (3.6)-(3.8) as b=k, c= ¢,
a=ay Letusputa(t)=a,+a, bt)=h +b,(t) =g +c. Then for the perturbations from (3.4)
we have a linearized system

at(t)(1 + k2) + (Byo(t) + cob)k(1 - kz) - R (k2 + 1)2 a,
b — (12)k(agc + qa) = R b,
G + (1/2)k(aph + bya) = R k¢ (3.9)

Various analytical criteria concerning the behavior of perturbations can be used to prove
linear stability. However, it is easier, however, to perform a direct numerical calculation of
solutions of the system (3.9). An example of such a calculation is presented in Fig. 3. As can
be seen, all solutions of the linearized system tend to zero, which indicates linear stability.

Thus, the calculation results show that, in the presence of friction, the development of
nonlinear instability leads to the formation of a system of stationary closed vortex cells in a
periodic zonal flow. In the presence of zonal flow, the full function of the flow current is
determined by the expression y = a(x,t)cosy + b(x,t)sin y + o x,t), or, in the limiting case, for
the values of k = 0.5, R™" = 0.1

v = —0.39coskxcosy + 0.204sin y + 0.806sin kx. (3.10)

Isolines of the current function (3.10) are shown in Fig. 4. As can be seen, all isolines of
this function are sloped along the flow.

An important result is that the modulus of the horizontally averaged velocity is less than
the modulus of the main flow velocity. If we denote the horizontally averaged velocity by
angle brackets, then for the main flow (U) = -1, and for the flow with cells, according to (18),
(U) = -0.204 . The formation of vortex cells thus leads to a decrease in the modulus of the
mean flow velocity. As shown below, this feature is also preserved for the stratified fluid
model.

The behavior described above with the establishment of stationary cells is

fundamentally different from the oscillatory behavior in the absence of friction.



4. STABILITY PROBLEM FORMULATION FOR A SEMI-CONFINED STRATIFIED
ATMOSPHERE

To study the stability of periodic currents, we use the equations of the surface
geostrophic model (SQG-model) describing the motions of a stratified rotating fluid with zero
potential vorticity [21, 22]. The model considers a stratified, rotating and semi-infinite
atmosphere (z>0) with a constant buoyancy frequencyN and an inertial frequencyf .
Atmospheric motions with characteristic velocity U, , horizontal scaleD and Rossby number
Ro = U,/ fD < 1 are considered. In dimensionless variables, the equations of the SQG model
include the Laplace equation for the current functiony in the inner region

Vi Wy + ¥z =0.(4.1)
Here, the horizontal and vertical scales are shafted as D and H = Df/N , the time scale and the
current function as T =D/, and vy, =UyD, respectively. Dimensionless horizontal
components of velocityu, v and buoyancy perturbations (potential temperature) are related to

the current function by the relations u= -y, v=vy,,06 =y,
The equation (4.1) is supplemented by an important boundary condition
z=0 Wzt+':w,wz:| =—rAy+F . 4.2)
Here square brackets denote the two-dimensional Jacobian on the variables

X, y[m, n]: myn, — myn,. Also denoted r=E" 2/2Ro is the bottom friction coefficient,

E=(he/H )2 is the Ekman number, hz = (2v/f )1/2 is the thickness of the Ekman boundary layer
with the effective turbulent toughness coefficientv . The detailed conclusions of condition

(4.2) are presented in the monograph [23]. Note that the friction coefficient can be represented

(2vf)
2VU % . Also note that for the given values of the parameters and hz = 0.5km , the

friction coefficient r = 4.

In condition (4.2) there is an external periodic force acting on the boundary F. Further
we consider this force to be stationary and spatially periodic F = —rcosy. In the absence of
friction and external force, condition (4.2) is the equations of buoyancy transfer at the
horizontal boundary.

Directly from (4.1), (4.2) follows the equation of the total energy balance

1

o E = I< (\pi + \yf, + \yg) > dz, (4.3)
0

Et:—r<\y§+\pf,>

reflecting the dissipative character of bottom friction. Here angular brackets denote the

operation of averaging over horizontal coordinates.



We emphasize that for solutions of the Laplace equation (4.1) (harmonic functions), the
values of the current functiony at the boundaries are expressed through the boundary value of
the normal derivative o = y, (by means of a nonlocal Hilbert-type operator). The description
of three-dimensional dynamics of currents with zero potential vorticity is thus reduced to the
solution of the two-dimensional equation (4.2) at the boundary. This explains the term surface
geostrophic model (SQG model). The model is described in detail in [22, 24-26].

The system (4.1), (4.2) in the presence of an external forceF = —rcosy on the boundary
has an exact solution

¥ =g “cosy, 4.4)
describing a zonal spatially periodic flow with velocity U =-¥, = e “siny, buoyancy
c =V, =-e?cosy, localized near the underlying surface. The dimensional shape of the
velocity profile U = Uye?H sin(y/D), H = Df/N. Representing y = ¥ + v’ and omitting the
dash, we obtain the Laplace equation (4.1) with boundary condition to describe the
perturbations
z=0: Wa +Sny(ve + i)+ ww, | =-ragy , (4.5)

and the attenuation condition at z — .

Within the framework of problem (4.1), (4.5), linear and nonlinear dynamics of
perturbations of the periodic flow (4.4) will be studied further. We emphasize that the
nonlinear term of the problem is contained only in the boundary conditions and describes the

nonlinear advection of the surface buoyancy field.

5. LINEAR STABILITY THEORY. GALERKIN METHOD

As before, we use the Galerkin method with three basis functions f; = siny,f, = cosy,
fy =1 along the transverse coordinatey to describe the linear dynamics of the perturbations.
According to this method, the approximate solution for the perturbations is sought in the form
of expansion by basis functions

v = A(x,zt)sny+ B(x,zt)cosy + C(x, z1). (5.1)
By virtue of the Laplace equation (4.1), the expansion coefficients satisfy the equations
Ay+A,-A=0,,B, +B,-B=0C, +C, =0. (5.2)

From the linearized form of condition (4.5), the equations relating the distributions

A, B, C at the boundary also follow. To obtain these equations, we write the condition (4.5) in

the form z=0: L(y) =y, +sny(y,, +wy)+rAy =0 and use the orthogonality conditions



(f,-(x)LTxy)) =0, i =1,2,3. Hereinafter, angle brackets denote the period averaging operation 2r:

() = (2n)_1 Ioznq)dy Considering (4.5), we obtain

L(y) = Agsny+ Bycosy+ Cy +8n YA, + A)sny +(B,, + By)cosy + C,, + C,) + (5.3)
+r((Ay — A)siny + (B, — B)cosy + Cyy) .

Hence from the orthogonality conditions follow the equations
Ay +(Cy + C)+ (A — A) =0 ,Cy + (V2)(A, + A)+1C,,, = 0. (5.4)
These equations are joined by an isolated equation
B, + r(By — B) =0, (5.5)
having only solutions damped with time, in particular B=0 . The conditions (5.4) are
considered at z = 0.
Harmonic on coordinatex solutions of equations (25) can be written in the form
A = a(t)e M dn(kx), C = d(t)e ¥ cos(kx), B =0, (5.6)
where k; = \/ﬁ . Substituting (5.6) into the conditions (5.4) at z = 0 leads to a system of
linear ordinary differential equations
a(t) + k; k(1= k)o(t) + rk; ' (k? +1)a = 0, (5.7)
G(t) + (12)(ky — N)a(t) + rke=0 .
This system has exponentially increasing solutions with time. Assuming a= A&?, c¢= G
from (5.7) we obtain from (5.7) a system of linear homogeneous equations

(x + i (K2 + 1))A k(1 - K)C = 0,
(V2)(ky 1) A+ (1 + rk)C = .
Equating the determinant of this system to zero, we obtain a quadratic equation for the ramp-
up increment
32 4 k! ((k2 +1)+ rk)x + G (K2 + 1)k - (12)k (1 - K) (kg ~1) = 0. (5.8)
The condition of equality to zero of the free term of this equation gives the boundary

valuer , determining the occurrence of instability

o o 2AKZ 1)
A U T 1%

Instability exists if r2 > ry 2(k) , or, equivalently,(1- k) (ks - 1)/ 2(k2 + 1) <r,. The graph
of the dependence r? = ry 2(k) , is shown in Fig. 5. The values of k lying above this curve,

which has the form of a potential pit, correspond to instability.
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6. NONLINEAR DYNAMICS OF PERTURBATIONS

Let us now describe the nonlinear dynamics of perturbations in the presence of friction.
For the description we also use the Galerkin method with three basis functions. The advantage
of this method is that it is relatively easy to construct an approximate solution to this
nonlinear problem.

As before, we will search for an approximate solution in the form of expansion (5.1),
where the expansion coefficients satisfy the linear equations (5.2) following from the Laplace
equation (4.1). To obtain the nonlinear equations at the boundary of z=0, we transform
condition (4.5). The linear part L(y) of this condition is given by expression (5.3). Direct
calculation of the nonlinear term gives
[v.v,]|=(12)(BA, - ABZ)X +(BC,, - C;B,)sin y + (C,A, — AC,,)cosy + F (sin2y,cos2y),
where F(sin2y,cos2y) denotes a linear combination of trigonometric functions of the dual
argument. Substituting this expression and L(y) (5.3) into (4.5), with the subsequent use of
orthogonality conditions, leads to a nonlinear equation system at the boundary
z=0: Ag+(B+1)Cyy +(1-B,)Cy —r(Ay — A) =0,

+(1Y2)((B+MA, +(1- B,)A) +rCy =0,
By + C,A, — ACy, + (B, — B)=0. (6.1)
The linearized version of (6.1) obviously reduces to the boundary equations (5.4).
We will search for approximate solutions of equations (4.1), (6.1) of the form
A = a(t)e 1 sn(kx), C = o(t)e " cog(kx), B = Kt)e %, (6.2)
where k; = \/m . For the chosen form of solutions, equation (4.1) is exactly satisfied and
the boundary equations (6.1) reduce to nonlinear ordinary differential equations without any

approximation. As before, we introduce the operation of averaging over the horizontal

coordinate (¢) = I|m jq)dx L= 2k and for the chosen form of the solution we calculate the
L

averaged nonlinear equation term of the last equation (6.1): <(CXAZ - ACXZ)> = (12) k(k; — k)ac.

It follows from the last expression that the approximate solution for the coefficientB should
depend only on time and vertical coordinate, which is taken into account in (6.2). Denoting
for brevity b= b+ 1, thus, we obtain a system of ordinary differential equations to describe
the nonlinear dynamics of perturbations

& + o bc+ rk{1(k2 +1)a= 0,

G +vba+rkc=0,
b —pac+r(b-1)=0. (6.3)

11



Here it is labeled
a=k(1-K)/k, v=(k-1/2 B-==klk-k)2 (6.4)
Note that in the absence of friction the nonlinear system (6.3) is analogous to the system
describing the motion of a symmetric shaft in mechanics (or the motion of a fluid in an

ellipsoidal cavity). The laws of conservation derived from (6.3) are

%(yaz - occz) =0, %(ﬁaz + ocbz) =0,
allow us to analytically integrate the system [27-29]. The corresponding solution describes
nonlinear oscillations similar to those described earlier for the barotropic model.

An important feature of the nonlinear system (6.3) in the model with friction is that the
stationary version of the system

abc+rk;1(k2+1)a=o, yba+rkc=0, —pac+r(b-1)=0. (6.5)

has an exact stationary solution. Secondly, from the second equation (6.3) follows

c=—ybal rk. Substituting this expression into the first equation, after reduction by a, shaft

b = r’k;’ k(k2 + 1)/ow, orb= ir\/k{1k(k2 + 1)/(xy . Now let us substitute the value of ¢ into the

last equation. We obtain a° :rzk(b‘1 —1)/[3y, or a:J_rer(b‘1 —1)/By. These expressions

uniquely determine the coordinates of the two stationary points of the system (6.3). For the
values r = 0.115, k = 0.6, the calculations give b= £0.736, a=+0.45, c= +0.40.

As calculations show, at small but finite values of r instead of oscillations, the regime of
establishment of stationary periodic solutions with amplitudes (fixed points) following from
the system (6.4) is realized. An example of the numerical solution of the nonlinear system
(6.3) for the values r = 0.115 k = 0.6 and initial conditions a(0) = 0.5, ¢(0) = 0.5, H(0) =1 is
shown in Fig. 6.

The results of calculations show that the specified fixed points are stable. Regardless of
the choice of initial conditions, all solutions of the system tend to one of the two fixed points.
This indicates the stability of the fixed points without analytical stability criteria.

Thus, the development of nonlinear instability leads to the formation of a system of
closed stationary vortex cells in a periodic zonal flow. In the presence of cells, the function of
the flow current is determined by the
expressiony = a(t)e ™ ?sin(kx)sin y + bt)e 2 cosy + c(t)e % cos(kx) or, in the limiting case, at the
lower boundary z = 0 for the values of the parameters r = 0.115, k = 0.6

v = —0.45sin(kx)sin y + 0.736cos y + 0.4 cos kx). (6.6)

12



Isolines of the current function (6.6) are shown in Fig. 7. As in the model with no
stratification, the isolines of this function are sloped along the flow. Stratification leads to a
decrease in the length of the limiting S-waves in the transverse direction.

As before, the modulus of the horizontally averaged velocity of the flow in the presence
of cells is less than the modulus of the main flow velocity. If we denote by angle brackets the
horizontally averaged velocity, then for the main flow (U) =1, and for the flow with cells,
according to (6.6), (U) = 0.736 . The formation of vortex cells, again, leads to a decrease in the
modulus of the mean flow velocity.

We emphasize that we used the Galerkin model with three modes to describe the
nonlinear dynamics of perturbations. As shown in [27], an increase in the number of modes
does not lead to qualitatively new results. The model with three modes also provides a good
approximation for the numerical values of the critical parameters.

It should also be noted that the currents of the stratified medium of periodic or
quasiperiodic structure are often enough observed in the atmospheres of the planets. Thus,
according to observation data, the distribution of the zonal current velocity by latitude in the

atmosphere of Jupiter is practically periodic.

CONCLUSION

The stability of spatially periodic flows of homogeneous and stratified fluid with
consideration of bottom friction is investigated. The Galerkin method with three basis
Fourier-harmonics is used for the solution of the stability problem. A system of ordinary
differential equations for the amplitudes of the Fourier-harmonics is formulated. On the basis
of numerical solution of this system, it was shown in previous works of the authors that in the
frictionless model the development of instability of flows leads to the regime of establishing
oscillations or shafts. In this work it is shown that the situation changes fundamentally when
friction is taken into account. Exponential growth of linear perturbations at the nonlinear stage
of development is replaced by the regime of establishment of stationary periodic
perturbations. These perturbations decrease the averaged horizontal flow velocity. Analytical
expressions for the spatial period and amplitude of perturbations are obtained.

The obtained theoretical results for the Kolmogorov flow agree with the description of
the experimental results presented in [16]; after passing the critical value of the Reynolds
number R, the unidirectional flow becomes unstable, and a secondary flow in the form of a

regular system of stationary shafts appears. As R increases, the stationary flow becomes

13



unstable and periodic oscillations appear. Thus, the results of a rather simple theoretical

model with three modes agree well with experiment.
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FIGURE CAPTIONS

Fig. 1. Nonlinear perturbation shafts (functions a(t), b(t), (t)) in the frictionless model.

Fig. 2. Example of numerical solution of the system (12) at k = 0.5, R~ = 0.1 with initial
conditions a(0) = 0.5, b(0) =1, ¢(0) = 0.9.

Fig. 3. Example of numerical solution of the linearized system.

Fig. 4. Isolines of the current function (18) established as a result of instability. The x
and y coordinates are plotted along the horizontal and vertical axes.

Fig. 5. Neutral stability curve.

Fig. 6. Example of numerical solution of the system (34) for the values
r = 0.115, k = 0.6 and initial conditions a(0) = 0.5, o(0) = 0.5, H(0) = 1.

Fig. 7. Isolines of the current function (37) establishing as a result of instability.
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