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Abstract. The stability of spatially periodic flows of homogeneous and stratified fluid is 

investigated with regard for bottom friction. The Galerkin method with three basis Fourier 

harmonics is used to solve the stability problem. A system of ordinary differential equations 

for the amplitudes of the Fourier harmonics is formulated. A solution to the linearized version 

of the system is obtained and an expression for the increment of disturbance growth is found. 

It is established that at the nonlinear stage of development the exponential growth of linear 

disturbances is replaced by the regime of establishing steady-state periodic disturbances in 

form of closed cells. These disturbances reduce the averaged horizontal velocity of the flow. 

Analytical expressions for the spatial period and amplitude of steady-state disturbances are 

obtained.  
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INTRODUCTION 

Extensive literature is devoted to research of hydrodynamic instability of geophysical 

currents (a large list of publications in [1-3]). The development of instability is associated 
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with the formation of atmospheric cyclones, synoptic vortices in the ocean, ordered vortex 

tracks, etc. 

In this work, the stability of spatially periodic flows of homogeneous and stratified fluid 

taking into account bottom friction is investigated. The Galerkin method with three basis 

Fourier-harmonics is used for the solution of the stability problem. A system of ordinary 

differential equations for the amplitudes of the Fourier-harmonics is formulated. On the basis 

of the numerical solution of this system, it was shown in previous works that in the 

frictionless model the development of instability of flows leads to the establishment of a 

regime of unsteady oscillations or shafts. In this work it is shown that the situation changes 

fundamentally when friction is taken into account. Exponential growth of linear perturbations 

at the nonlinear stage of development is replaced by the regime of establishment of stationary 

periodic perturbations in space. These perturbations decrease the averaged horizontal flow 

velocity. Analytical expressions for the spatial period and amplitude of perturbations are 

obtained. 

1. PERIODIC FLOW IN A MODEL OF A MONOTONOUS FLUID 

We consider two-dimensional motions of a homogeneous incompressible viscous fluid 

with characteristic horizontal scale D and velocity 0U  in the presence of an external force f  . 

The dimensionless variables of the motion are described by the equation  

                      ( )1 2( ) ( ) ( )t x y y x R f−∆ψ + ψ ∆ψ − ψ ∆ψ = ∆ ψ + .                          (1.1) 

Here ψ  is the current function, , yu = −ψ v x= ψ  are velocity components, 0R U D= ν is the 

Reynolds number, ν is the kinematic toughness coefficient, ∆ − is the Laplace operator. As 

scales of coordinates, time and current function are taken respectively D, 0D U , 0U D, 

amplitude of external force 2
0 0f U D= ν . 

 The system of equations (1.1) has an exact solution 

                          ( ) siny yψ = Ψ = , ( ) cosu U y y= = − ,      (1.2) 

describing a stationary spatially periodic flow excited by an external periodic force sinf y= −  . 

This flow is called "Kolmogorov flow". The flow (1.2) is an exact solution of (1.1) and in the 

absence of toughness 1 0R− =  (non-viscous Kolmogorov flow). 

 Currents (1.2) are reproduced quite well by the magnetohydrodynamic method in 

laboratory experiments with a conducting fluid [4-7]. Analogs of such currents can also be 

created in natural conditions, for example, under the action of periodic distribution of wind 

tangential voltage in the ocean or external heat inflows in the atmosphere. 
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 The problem on the stability of the flow (1.2) in a viscous fluid was first posed by A. N. 

Kolmogorov in 1960. A year later, a linear version of the problem obtained a solution in the 

famous paper [7]. For research of linear stability in this work, the apparatus of the chain 

fraction theory was used to determine the minimum critical value of the Reynolds number and 

the wavelength of the most dangerous perturbation. The high degree of symmetry and the 

possibility of laboratory modeling of the Kolmogorov flow (1.2) stimulated numerous 

theoretical researches of its stability in the presence of a series of complicating factors 

(friction, beta effect, stratification) [8-15]. A long-wave approach to the research of nonlinear 

stability of the Kolmogorov flow using integral solvability conditions for periodic 

perturbations was proposed in [16, 17]. Using this approach, a weakly nonlinear stability 

theory was developed that is valid for small deviations of the Reynolds numberR from the 

critical value. A review of publications devoted to research on the stability of the Kolmogorov 

flow is presented in [4] and article [22]. 

 The linear dynamics of perturbations at large values of the Reynolds number was 

studied in the mentioned article [7] and in [15]. The nonlinear dynamics of perturbations of 

Kolmogorov flow in the absence of friction (R = ∞) was studied in recent papers [15, 17]. In 

this work, we consider an approach to describe the nonlinear dynamics of perturbations at 

finite values of the Reynolds number. This approach uses the Galerkin method with three 

basis trigonometric functions and time-dependent perturbation amplitudes. It is shown that the 

time behavior of the perturbation amplitudes is described by a system of three nonlinear 

differential equations. It is found that in the model with friction the exponential growth of 

linear perturbations of the Kolmogorov flow is replaced by the regime of establishment of 

stationary periodic perturbations in the form of closed cells. These perturbations lead to 

meandering of the flow and reduce its mean velocity. Analytical expressions for the spatial 

period and amplitude of perturbations are obtained. 

2. GALERKIN METHOD AND LINEAR STABILITY THEORY 

Representing in (1.1) ( )yψ = Ψ + ψ′, to describe the dynamics of small perturbations 

ofψ′ stationary non-viscous flow (1.2) we obtain the equation 

 ( ) 1 2( ) cost x y R−∆ψ − ∆ψ + ψ = ∆ ψ′ ′ ′ ′.                (2.1) 

In [7] exponentially increasing with time and periodic in coordinatey solutions of 

equation (2.1), represented by a series of trigonometric functions cos( ),sin( )ny ny  were found. 

Finding the increment of acceleration was reduced to the analysis of a rather cumbersome 

algebraic equation containing an infinite chain fraction.  
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A simplified approach to constructing solutions to equation (2.1) is based on the 

Galerkin method with three basis functions 1( ) 1f y = , 2( ) cosf y y= , 3( ) sinf y y=  (the first three 

terms of trigonometric series). We denote by angle brackets ( )
21
0

2 dy
π−φ = π φ∫  the operation 

of averaging over the period2π of the background flow and write equation (2.1) in symbolic 

form ( ) 0L ψ =′  . In accordance with the Galerkin method, we find an approximate solution of 

equation (2.1) in the form (we omit the dash at perturbations) 

                     ( , )cos ( , )sin ( , )A x t y B x t y C x tψ = + + .                         (2.2) 

We find the expansion coefficients from the orthogonality conditions , 

( ) ( ) 0if y L ψ = 1,2,3i =  . Thus, we obtain a system of equations for the expansion coefficients 

       ( ) ( ) ( )1 2xx xx xxxx xxt xA A C C R A A A−− − + = − +  ,   ( ) 11 2t x xxС A R C−− =  . (2.3) 

These equations are joined by an isolated equation 

                ( ) ( )1 2xx xxxx xxtB B R B B B−− = − + ,                                                         (2.4) 

having only damped solutions over time, in particular 0B = . 

Finding solutions to equations (2.3) of the form 0 cos( )tA a e kxλ= , 0 sin( )tC c e kxλ=  leads 

to the equation for the square for the incremental rise λ 

( ) ( )( ) ( ) ( ) ( )22 2 1 2 2 2 2 2 2 21 1 2 1 1 1 2 1 0k R k k R k k k k− −+ λ + + + λ + + + − = . (2.5) 

Equating the free term of equation (2.5) to zero, we obtain the equation of the neutral 

stability curve on the parameter plane( , )k R  . This curve separates the growing solutions( 0)λ >  

from the damped solutions( 0)λ <  and is described by the equation 

                               
2

2

1( ) 2
1

cr
kR R k

k

+
= =

−
 .                                                     (2.6) 

Formula (2.6) gives an excellent approximation of the neutral curve equation obtained 

by the chain fraction theory method in [7]. According to this formula, instability exists if 

2R >  , and the interval of wave numbers of unstable modes lies inside the interval 0 1k< < . 

Note that according to (2.5) , in the absence of friction ( 1 0R− =  ) the square of the 

accretion increment ( ) ( ) ( )2 2 2 21 2 1 1k k kλ = − +  . According to this expression, the long-wave 

perturbations with 20 1k< <   are exponentially increasing. The most dangerous perturbation 

with the maximum increment corresponds to the wave number 2 1 0,64mk k= = − ≈  . The 

dynamics of linear and nonlinear perturbations in the absence of friction has been studied in 

detail in our recent works [18, 20]. 



 5 

3. NONLINEAR DYNAMICS OF PERTURBATIONS OF PERIODIC FLOW OF 

HOMOGENEOUS FLUID 

The results of the linear analysis suggest that the Galerkin method will give a good 

approximation of solutions in the nonlinear case as well. For the flow (1.2), the nonlinear 

dynamics of perturbations is described by Eq.  

              ( ) 1 2( ) cos ( ) ( )t x y y xx y R−∆ψ − ∆ψ + ψ + ψ ∆ψ − ψ ∆ψ = ∆ ψ′ ′ ′ ′ ′ ′ ′ ′   (3.1) 

We will look for an approximate solution of (3.1) in the form (2.2). Substituting (2.2) 

into (3.1) and using the orthogonality conditions to the system of functions ( )if y , we obtain the 

following nonlinear equation system of partial differential equations for determining the 

expansion coefficients  

       ( ) ( ) ( ) ( )1 2xx xx xx x xxx xxxx xxt xA A C C B B C BC R A A A−− + + + − + = − − + , 

( ) ( ) ( )1 2xx xx x xxx xxxx xxtB B A A C AC R B B B−− − − − = − − + , 

                                              ( ) ( )( ) 11 2 1 2t x x x xxC A BA AB R C−− − − = .  (3.2) 

Here the first two equations (3.2) are multiplied by 1−  for simplicity. The linear version of the 

system (3.2) reduces to (2.3), (2.4). Note that for the variable C the Galerkin method gives the 

equation ( )( ) 11 2 ( 1) ( 1)xxt x x xxxxxxC B A A B R C−− + − + = . The third equation (3.2) is obtained 

from this equation by lowering the order. 
Assuming 1 1B B= −  and considering that 1 1( )B B t=  depends only on time, let us write 

the system (3.2) in the form of  

                ( ) ( ) ( )1
1 2xx xx xxxx xxt xA A B C C R A A A−− + + = − − + , 

               ( ) ( )1
1 1( ) 1t xx x xxxB A A C AC R B−− − − = − − ,   

                    ( ) 1
11 2 ( )t x xxC B t A R C−− =                                                           (3.3) 

Now we assume  

                    ( )cos( )A a t kx= , ( )sin( )C c t kx= , 1 ( )B b t=                             

Substituting these expressions into (3.3) leads to a system of nonlinear ordinary 

differential equations with respect to amplitudes ( )a a t= , ( )с с t= , ( )b b t=  

     ( ) ( ) ( )22 2 1 2( ) 1 ( ) 1 1ta t k bc t k k R k a−+ + − = − + ,   

               ( ) 11 2 ( 1)tb kac R b−− = − − ,  

                 ( ) 1 21 2 ( )tc kab t R k c−+ = −  .                                                            (3.4) 
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Here the lower letter indexes denote partial derivatives in time. The mean equation (3.4) 

follows from the equation ( )2 2 3 2
1( ) 1 cos cos 0tb k kac x ack x− + + =  , after applying the formulae 

of degree reduction. The rest of the equations are exact. 

The case with absence of friction was considered in our previous works [18, 20]. In this 

case the system (3.4) is reduced to a nonlinear system  

        
2 2( )(1 ) ( ) (1 ) 0ta t k bc t k k+ + − = ,     ( )1 2 0tb kac− = ,        ( )1 2 ( ) 0tc kab t+ =   .  

The laws of conservation follow from this system 

              ( )2 2 0d b сdt + = ( )2 2 2d ( ) 0d g k a b ct + − =  ,   

where ( ) ( )2 2( ) 1 1g k k k= + −  . Using these laws allows us to represent the solution of the 

system in terms of elliptic functions. This solution describes nonlinear oscillations or 

vascillations. An example of the numerical solution of the system (3.4) in the case of 1 0R− =  

for the value k = 0. 5 is presented in Fig.1. As calculations show, at values of R close to zero, 

damped oscillations with time take place. A completely different behavior is observed in the 

model with friction at small but finite values of Reynolds number R. In this case, instead of 

oscillations, the regime of establishment of stationary spatially periodic flows is realized. Let 

us dwell on this regime in more detail. 

It is easy to see that the stationary version of the system (3.4) in the model with friction  

                ( ) ( )22 1 21 1 0bck k R k a−− + + = ,                   

                 ( ) 11 2 ( 1) 0kac R b−− + − = ,    

                  ( ) 1 21 2 0kab R k c−+ =  ,                                                                      (3.5)     
has an exact stationary solution. Indeed, from the last equation (3.5) follows 

                  
( )

1 2
1 2 kab

c
R k−= −    .                                                                               (3.6) 

 Substituting this expression into the first equation (3.5) after reduction by a and simple 

transformations, we obtain ( )
( )

22 2
2

2

1
2

1

R k
b

k

− +
=

−
 , or  

                           

( )1 2

2

1
2

1

R k
b

k

− +
= ±

−
.                          (3.7) 

Substituting (3.7) into the third equation (3.5) we obtain  

                              1 12 1a R b− −= ± −                                                                (3.8) 

Expressions (3.6)-(3.8) uniquely define two fixed stationary points of the system (3.4). 
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Numerical calculations show that the data fixed points are stable. Regardless of the 

choice of initial conditions, all solutions tend to one of the two fixed points. An example of 

numerical solution of the nonlinear system (3.4) is presented in Fig. 2. 

The coordinates of the fixed points agree well with expressions (3.6)-(3.8). In particular 

at 10.5, 0.1k R−= =  the theoretical limits of (3.6)-(3.8) are: 0.2054b = , 0.39a = − ,  0.806c = . 

These values practically coincide with the values in the numerical calculation. 

 The proof of stability of fixed points can be done using a system for linear 

approximation. Let us denote the coordinates of the fixed points (3.6)-(3.8) as 0b b= , 0с с= , 

0a a= . Let us put 0( )a t a a= + ,  0( )b t b b= + , 0( )c t c c= + .  Then for the perturbations from (3.4) 

we have a linearized system 

                       ( ) ( ) ( ) ( )22 2 1 2
0 0( ) 1 ( ) 1 1ta t k b c t c b k k R k a−+ + + − = − + ,   

                       ( ) 1
0 01 2 ( )tb k a c с a R b−− + = − ,    

                         ( ) 1 2
0 01 2 ( )tc k a b b a R k c−+ + = −                                    (3.9)     

Various analytical criteria concerning the behavior of perturbations can be used to prove 

linear stability. However, it is easier, however, to perform a direct numerical calculation of 

solutions of the system (3.9). An example of such a calculation is presented in Fig. 3. As can 

be seen, all solutions of the linearized system tend to zero, which indicates linear stability. 
Thus, the calculation results show that, in the presence of friction, the development of 

nonlinear instability leads to the formation of a system of stationary closed vortex cells in a 

periodic zonal flow. In the presence of zonal flow, the full function of the flow current is 

determined by the expression ( , )cos ( , )sin ( , )a x t y b x t y c x tψ = + + , or, in the limiting case, for 

the values of 10.5, 0.1k R−= =  

                              0.39cos cos 0.204sin 0.806sinkx y y kxψ = − + + .                (3.10) 

Isolines of the current function (3.10) are shown in Fig. 4. As can be seen, all isolines of 

this function are sloped along the flow. 

An important result is that the modulus of the horizontally averaged velocity is less than 

the modulus of the main flow velocity. If we denote the horizontally averaged velocity by 

angle brackets, then for the main flow 1U〈 〉 = −  , and for the flow with cells, according to (18), 

0.204U〈 〉 = −  . The formation of vortex cells thus leads to a decrease in the modulus of the 

mean flow velocity. As shown below, this feature is also preserved for the stratified fluid 

model. 

The behavior described above with the establishment of stationary cells is 

fundamentally different from the oscillatory behavior in the absence of friction.  
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4. STABILITY PROBLEM FORMULATION FOR A SEMI-CONFINED STRATIFIED 

ATMOSPHERE  

To study the stability of periodic currents, we use the equations of the surface 

geostrophic model (SQG-model) describing the motions of a stratified rotating fluid with zero 

potential vorticity [21, 22]. The model considers a stratified, rotating and semi-infinite 

atmosphere ( 0z > ) with a constant buoyancy frequencyN  and an inertial frequency f  . 

Atmospheric motions with characteristic velocity 0U  , horizontal scaleD and Rossby number 

0Ro 1U fD=   are considered. In dimensionless variables, the equations of the SQG model 

include the Laplace equation for the current functionψ  in the inner region  

                  0xx yy zzψ + ψ + ψ = . (4.1) 

Here, the horizontal and vertical scales are shafted as D and H Df N=  , the time scale and the 

current function as 0T D U=  and 0 0U Dψ = , respectively. Dimensionless horizontal 

components of velocity , vu  and buoyancy perturbationσ (potential temperature) are related to 

the current function by the relations , vy xu = −ψ = ψ , zσ = ψ . 

The equation (4.1) is supplemented by an important boundary condition 

20: ,zt zz r F = ψ + ψ ψ = − ∆ ψ +   .                                        (4.2) 

Here square brackets denote the two-dimensional Jacobian on the variables 

, ,x у[ ], x y y xm n m n m n= − . Also denoted 1/ 2E 2Ror =  is the bottom friction coefficient, 

( )2E Eh H=  is the Ekman number, ( )1/ 22Eh f= ν  is the thickness of the Ekman boundary layer 

with the effective turbulent toughness coefficientν . The detailed conclusions of condition 

(4.2) are presented in the monograph [23]. Note that the friction coefficient can be represented 

as 
1/ 2

2
*

2 f Dr HU

 ν
=  
 

 . Also note that for the given values of the parameters and 0.5кмEh =  , the 

friction coefficient 4r = . 

In condition (4.2) there is an external periodic force acting on the boundary F . Further 

we consider this force to be stationary and spatially periodic cosF r y= − . In the absence of 

friction and external force, condition (4.2) is the equations of buoyancy transfer at the 

horizontal boundary.  

Directly from (4.1), (4.2) follows the equation of the total energy balance  

 2 2
0t x y z

E r
=

= − < ψ + ψ > ,  ( )
1

2 2 2

0
x y zE dz= < ψ + ψ + ψ >∫ ,                             (4.3) 

reflecting the dissipative character of bottom friction. Here angular brackets denote the 

operation of averaging over horizontal coordinates. 
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We emphasize that for solutions of the Laplace equation (4.1) (harmonic functions), the 

values of the current functionψ  at the boundaries are expressed through the boundary value of 

the normal derivative zσ = ψ  (by means of a nonlocal Hilbert-type operator). The description 

of three-dimensional dynamics of currents with zero potential vorticity is thus reduced to the 

solution of the two-dimensional equation (4.2) at the boundary. This explains the term surface 

geostrophic model (SQG model). The model is described in detail in [22, 24-26]. 

The system (4.1), (4.2) in the presence of an external force cosF r y= −  on the boundary 

has an exact solution 

                                   cosze y−Ψ =  ,                                                                 (4.4) 

describing a zonal spatially periodic flow with velocity sinz
yU e y−= −Ψ = , buoyancy 

cosz
z e y−σ = Ψ = − , localized near the underlying surface. The dimensional shape of the 

velocity profile /
0 sin( )z HU U e y D−= , H Df N= . Representing ψ = Ψ + ψ′ and omitting the 

dash, we obtain the Laplace equation (4.1) with boundary condition to describe the 

perturbations 

                    ( ) 20 : sin ,zt xz x zz y r = ψ + ψ + ψ + ψ ψ = − ∆ ψ   , (4.5) 

and the attenuation condition at z → ∞. 

Within the framework of problem (4.1), (4.5), linear and nonlinear dynamics of 

perturbations of the periodic flow (4.4) will be studied further. We emphasize that the 

nonlinear term of the problem is contained only in the boundary conditions and describes the 

nonlinear advection of the surface buoyancy field.   

 5. LINEAR STABILITY THEORY. GALERKIN METHOD 

As before, we use the Galerkin method with three basis functions 1 sinf y= , 2 cosf y= , 

3 1f =  along the transverse coordinateу to describe the linear dynamics of the perturbations. 

According to this method, the approximate solution for the perturbations is sought in the form 

of expansion by basis functions  

                  ( , , ) sin ( , , )cos ( , , )A x z t y B x z t y C x z tψ = + + .           (5.1) 

By virtue of the Laplace equation (4.1), the expansion coefficients satisfy the equations  

                 0xx zzА A A+ − = , , 0xx zzB B B+ − = 0xx zzC C+ = .                               (5.2)  

From the linearized form of condition (4.5), the equations relating the distributions 

, ,A B C at the boundary also follow. To obtain these equations, we write the condition (4.5) in 

the form ( ) 20 : ( ) sin 0zt xz xz L y r= ψ = ψ + ψ + ψ + ∆ ψ =  and use the orthogonality conditions 
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�
( ) ( ) 0if x L ψ = , 1,2,3i = . Hereinafter, angle brackets denote the period averaging operation 2π: 

( )
21
0

2 dу
π−φ = π φ∫  Considering (4.5), we obtain  

( ) sin cos sin ( )sin ( )cos )
(( )sin ( )cos )

zt zt zt xz x xz x xz x

xx xx xx

L A y B y С y A A y B B y C C
r A A y B B y C

ψ = + + + + + + + + +

+ − + − +
  (5.3)               

Hence from the orthogonality conditions follow the equations  

( ) ( ) 0zt xz x xxA C C r A A+ + + − =   , (1 2)( ) 0zt xz x xxС A A rC+ + + =  . (5.4) 

These equations are joined by an isolated equation 

                   ( ) 0zt xxB r B B+ − = , (5.5) 

having only solutions damped with time, in particular 0B =  . The conditions (5.4) are 

considered at z = 0. 

Harmonic on coordinateх solutions of equations (25) can be written in the form 

                   1( ) sin( )k zA a t e kx−= ,   ( ) cos( )kzC c t e kx−= ,  0B = ,                          (5.6) 

where 2
1 1k k= +  . Substituting (5.6) into the conditions (5.4) at z = 0 leads to a system of 

linear ordinary differential equations 

                  
1 1 2

1 1( ) (1 ) ( ) ( 1) 0ta t k k k c t rk k a− −+ − + + = ,                       (5.7) 

                     1( ) (1 2)( 1) ( ) 0tc t k a t rkc+ − + =    .  

This system has exponentially increasing solutions with time. Assuming  ,t ta Ae c Ceλ λ= =  

from (5.7) we obtain from (5.7) a system of linear homogeneous equations 

                   ( )( )1 2 1
1 11 (1 ) 0rk k A k k k C− −λ + + + − = ,    

                  ( )( )11 2 1 ( ) 0k A rk C− + λ + = . 

Equating the determinant of this system to zero, we obtain a quadratic equation for the ramp-

up increment 

                 ( )( ) ( ) ( ) ( )2 1 2 2 1 2 1
1 1 1 11 1 1 2 (1 ) 1 0rk k rk r k k k k k k k− − −λ + + + λ + + − − − = .     (5.8)   

The condition of equality to zero of the free term of this equation gives the boundary 

valuer  , determining the occurrence of instability  

                         

2
2 2

1

2( 1)( ) (1 )( 1)c
kr r k k k

− − +
= =

− −
.     

Instability exists if 2 2( )cr r k− −>  , or, equivalently, ( ) ( )2
1(1 ) 1 2 1 ck k k r− − + < .  The graph 

of the dependence 2 2( )cr r k− −=  , is shown in Fig. 5. The values of   k lying above this curve, 

which has the form of a potential pit, correspond to instability.  
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6. NONLINEAR DYNAMICS OF PERTURBATIONS  

Let us now describe the nonlinear dynamics of perturbations in the presence of friction. 

For the description we also use the Galerkin method with three basis functions. The advantage 

of this method is that it is relatively easy to construct an approximate solution to this 

nonlinear problem.  

As before, we will search for an approximate solution in the form of expansion (5.1), 

where the expansion coefficients satisfy the linear equations (5.2) following from the Laplace 

equation (4.1). To obtain the nonlinear equations at the boundary of 0z = , we transform 

condition (4.5). The linear part ( )L ψ  of this condition is given by expression (5.3). Direct 

calculation of the nonlinear term gives 

( )( ) ( ) ( ) ( ), 1 2 sin cos sin 2 ,cos2z z z xz x z x z xzx
BA AB BC C B y C A AC y F y y ψ ψ = − + − + − +  , 

where (sin 2 ,cos2 )F y y  denotes a linear combination of trigonometric functions of the dual 

argument. Substituting this expression and ( )L ψ  (5.3) into (4.5), with the subsequent use of 

orthogonality conditions, leads to a nonlinear equation system at the boundary 

0 :z =                  ( ) ( ) ( )1 1 0zt xz z x xxA B C B C r A A+ + + − − − =  ,                        

                            ( )( )1 2 ( 1) (1 ) 0zt z z xxx
C B A B A rC+ + + − + = ,      

                              ( ) 0zt x z xz xxB C A AC r B B+ − + − =  .                      (6.1)        

The linearized version of (6.1) obviously reduces to the boundary equations (5.4). 

We will search for approximate solutions of equations (4.1), (6.1) of the form 

              1( ) sin( )k zA a t e kx−= , ( ) cos( )kzC c t e kx−= ,   ( ) zB b t e−= ,                   (6.2) 

 where 2
1 1k k= +  . For the chosen form of solutions, equation (4.1) is exactly satisfied and 

the boundary equations (6.1) reduce to nonlinear ordinary differential equations without any 

approximation. As before, we introduce the operation of averaging over the horizontal 

coordinate 
0

1lim
L

L
dxL→∞

φ = φ∫ , 2L k
π

=  and for the chosen form of the solution we calculate the 

averaged nonlinear equation term of the last equation (6.1): ( ) ( ) 11 2 ( )x z xzС A AC k k k ac− = − . 

It follows from the last expression that the approximate solution for the coefficientB should 

depend only on time and vertical coordinate, which is taken into account in (6.2). Denoting 

for brevity 1b b= +  , thus, we obtain a system of ordinary differential equations to describe 

the nonlinear dynamics of perturbations  

                  ( )1 2
1 1 0ta bc rk k a−+ α + + = ,   

                  0tc ba rkc+ γ + = ,      

                  ( 1) 0tb ac r b− β + − = .                                                             (6.3)   
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Here it is labeled  

               ( ) 11k k kα = − ,     ( )1 1 2kγ = − ,    ( )1 2k k kβ = − .                          (6.4)       

Note that in the absence of friction the nonlinear system (6.3) is analogous to the system 

describing the motion of a symmetric shaft in mechanics (or the motion of a fluid in an 

ellipsoidal cavity). The laws of conservation derived from (6.3) are  

            ( )2 2 0d a cdt γ − α =  ,    ( )2 2 0d a bdt β + α = ,                                                       

allow us to analytically integrate the system [27-29]. The corresponding solution describes 

nonlinear oscillations similar to those described earlier for the barotropic model. 

An important feature of the nonlinear system (6.3) in the model with friction is that the 

stationary version of the system 

                  ( )1 2
1 1 0bc rk k a−α + + = ,       0ba rkcγ + = ,      ( 1) 0ac r b−β + − =   .    (6.5) 

has an exact stationary solution. Secondly, from the second equation (6.3) follows 

/c ba rk= −γ . Substituting this expression into the first equation, after reduction by a, shaft 

( )2 2 1 2
1 1b r k k k−= + αγ , or ( )1 2

1 1b r k k k−= ± + αγ . Now let us substitute the value of c into the 

last equation. We obtain ( )2 2 1 1a r k b−= − βγ , or ( )1 1a r k b−= ± − βγ . These expressions 

uniquely determine the coordinates of the two stationary points of the system (6.3). For the 

values 0.115, 0.6r k= =  , the calculations give 0.736b = ± ,    0.45a = ± ,   0.40c = ± . 
As calculations show, at small but finite values of r instead of oscillations, the regime of 

establishment of stationary periodic solutions with amplitudes (fixed points) following from 

the system (6.4) is realized.  An example of the numerical solution of the nonlinear system 

(6.3) for the values 0.115, 0.6r k= =  and initial conditions (0) 0.5a = , (0) 0.5с = , (0) 1b =  is 

shown in Fig. 6.  

The results of calculations show that the specified fixed points are stable. Regardless of 

the choice of initial conditions, all solutions of the system tend to one of the two fixed points. 

This indicates the stability of the fixed points without analytical stability criteria. 

Thus, the development of nonlinear instability leads to the formation of a system of 

closed stationary vortex cells in a periodic zonal flow. In the presence of cells, the function of 

the flow current is determined by the 

expression ( ) sin( )sin ( ) cos ( ) cos( )z z kza t e kx y b t e y c t e kx−κ − −ψ = + +  or, in the limiting case, at the 

lower boundary z = 0 for the values of the parameters 0.115, 0.6r k= =  

                              0.45sin( )sin 0.736cos 0.4cos( )kx y y kxψ = − + + .              (6.6) 
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Isolines of the current function (6.6) are shown in Fig. 7. As in the model with no 

stratification, the isolines of this function are sloped along the flow. Stratification leads to a 

decrease in the length of the limiting S-waves in the transverse direction. 

As before, the modulus of the horizontally averaged velocity of the flow in the presence 

of cells is less than the modulus of the main flow velocity. If we denote by angle brackets the 

horizontally averaged velocity, then for the main flow 1U〈 〉 =  , and for the flow with cells, 

according to (6.6), 0.736U〈 〉 =  . The formation of vortex cells, again, leads to a decrease in the 

modulus of the mean flow velocity.  

We emphasize that we used the Galerkin model with three modes to describe the 

nonlinear dynamics of perturbations. As shown in [27], an increase in the number of modes 

does not lead to qualitatively new results. The model with three modes also provides a good 

approximation for the numerical values of the critical parameters. 

It should also be noted that the currents of the stratified medium of periodic or 

quasiperiodic structure are often enough observed in the atmospheres of the planets. Thus, 

according to observation data, the distribution of the zonal current velocity by latitude in the 

atmosphere of Jupiter is practically periodic. 

CONCLUSION 

The stability of spatially periodic flows of homogeneous and stratified fluid with 

consideration of bottom friction is investigated. The Galerkin method with three basis 

Fourier-harmonics is used for the solution of the stability problem.  A system of ordinary 

differential equations for the amplitudes of the Fourier-harmonics is formulated. On the basis 

of numerical solution of this system, it was shown in previous works of the authors that in the 

frictionless model the development of instability of flows leads to the regime of establishing 

oscillations or shafts. In this work it is shown that the situation changes fundamentally when 

friction is taken into account. Exponential growth of linear perturbations at the nonlinear stage 

of development is replaced by the regime of establishment of stationary periodic 

perturbations. These perturbations decrease the averaged horizontal flow velocity. Analytical 

expressions for the spatial period and amplitude of perturbations are obtained. 

 The obtained theoretical results for the Kolmogorov flow agree with the description of 

the experimental results presented in [16]; after passing the critical value of the Reynolds 

number R, the unidirectional flow becomes unstable, and a secondary flow in the form of a 

regular system of stationary shafts appears. As R increases, the stationary flow becomes 
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unstable and periodic oscillations appear. Thus, the results of a rather simple theoretical 

model with three modes agree well with experiment. 
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FIGURE CAPTIONS 

Fig. 1. Nonlinear perturbation shafts (functions ( ) ( ), , ( )a t b t c t ) in the frictionless model. 

Fig. 2. Example of numerical solution of the system (12) at 10.5, 0.1k R−= =  with initial 

conditions (0) 0.5a = , (0) 1b = , (0) 0.9с = . 

Fig. 3. Example of numerical solution of the linearized system. 

 Fig. 4. Isolines of the current function (18) established as a result of instability. The x 

and y coordinates are plotted along the horizontal and vertical axes. 

 Fig. 5. Neutral stability curve. 

 Fig. 6. Example of numerical solution of the system (34) for the values 

0.115, 0.6r k= =  and initial conditions (0) 0.5a = , (0) 0.5с = , (0) 1b = . 

 Fig. 7. Isolines of the current function (37) establishing as a result of instability. 
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