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Abstract. Research of liquid jet flows in the presence of a ventilated cavern with a negative 

cavitation number, conducted at the Institute of Mechanics of Moscow State University, has shown 

that under certain conditions in the hydraulic system cavitation auto-oscillations with high 

intensity of pressure pulsations occur. The paper presents the results of research of an 

axisymmetric model of a pulse jet generator with liquid jet flow through the central orifice in the 

diaphragm and with peripheral gas blow-up behind the diaphragm. The two-phase medium 

flowing outward was realized through a tapered conical nozzle. Research on the influence of the 

generator parameters as well as the distance to the screen wall on its efficiency was carried out.  A 

narrow region of relatively small blow-ups was found, in which pressure fluctuations with high 

frequency are registered, and the amplitude of pressure shock pulses on the screen noticeably 

exceeds the amplitude of pulses in low-frequency modes of generation. This mode may be a 

consequence of the development of two-phase structures at the unstable boundary of the jet during 

its interaction with the walls of the tapered nozzle. Proof of the possibility of the existence of such 

a flow regime was the solution of a plane problem on the interaction of a finite jet with an inclined 

plate at different pressures on the jet surfaces. The problem is solved exactly by TFCP methods 

using quasi-binary-periodic theta functions. 
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INTRODUCTION 

Research of jet fluid flows in the presence of a ventilated cavern with a negative cavitation 

number, conducted at the Institute of Mechanics of Moscow State University [1-3] showed that 

under certain conditions in the hydraulic system there are cavitation auto-oscillations with high 

intensity of pressure pulsations both in the cavern and in the region upstream. The possibility in 

principle of using the auto-oscillation mode to create periodic pulse jets when flowing from a 

tapered nozzle into the atmosphere was shown. The most obviously application of the pulse jet 

generator can be found in the technologies of water-jet mining [4]. To obtain jets with very high 

parameters, pulse water cannons (the liquid receives impulse due to the impact of a piston 

accelerated by powder gases) and hydrocannons (the liquid in the shaft is accelerated together with 

the piston) are usually used. The scheme without piston pulse water cannon has the closest relation 

to the topic considered in the article: the liquid mass is accelerated directly by gas. Calculations 

and experiment [4, 5] have shown that the velocity of such jets can reach 1600 m/s with a 

sufficiently large range when flowing both into the air and into the space flooded with water.  

In plants using pulsating jets, there is a noticeable increase in productivity and, at the same 

time, a decrease in the specific energy intensity of material destruction and a decrease in water 

consumption, which ensures the permissible moisture content of the extracted mineral. In [6] a 

review of devices capable of providing pulsation mode of operation of jet plants is given. As a 

rule, mechanical devices are used in such installations to organize pulsating modes of operation. 

However, there are known ways to create pulse jets without using mechanical devices - first of all, 

these are pulse jet generators that use cavitation auto-oscillations at occurrence of natural (steam) 

cavitation in a Venturi tube [7]. The operation of such generators assumes a significant pressure 

drop at the inlet and outlet of the Venturi tube and starts at rather high head pressures sufficient 

for the development of vapor cavitation in the channel of the Venturi tube. For the generator 

scheme studied here, the presence of a ventilated cavern behind the cavitator is fundamental, the 

character of the flow changes: intensive auto-oscillations occur at small pressure drops on the 

cavitator, the energy of impulse jets includes not only the liquid head, but also the work of 

compressed gas. As a result, developed cavitation autocolevations begin already at small (less than 

0.01 MPa) head pressures. Note that in generators using natural cavitation in a Venturi tube, the 

presence of an outlet tapered nozzle is not fundamental (the generator works effectively without 

such a nozzle [8]), while in a scheme with a ventilated cavern, the presence of an outlet nozzle (or 

other resistance) is fundamental. 

 The question of generating periodic pulsed jets using cavitation auto-oscillations was 

previously studied in a planar formulation [9]. However, for practical purposes, the axisymmetric 

formulation of the experimental problem is closer. Further research was carried out on an 



axisymmetric model of the unit, and, at the first stage, a technologically simpler configuration with 

the liquid jet flowing through the central hole in the diaphragm and with peripheral gas blowing 

was produced (in the flat formulation, the flow with a central ventilated cavern was modeled). 

Experiments, showed that low-frequency auto oscillations also occur in this configuration, but at 

slightly higher coefficients of gas underblow than in the flat model with a central cavern [3], the 

intensity of shock pulses was somewhat lower than in the flat setup. Research on the influence of 

nozzle parameters on the generator efficiency was carried out, and the dependence of the intensity 

of shock pulses on the distance to the wall-screen was investigated. 

 Experiments have shown that there is a narrow region of relatively small blow-ups in 

which pressure fluctuations with a frequency much higher than the frequency of fluctuations 

developing at large blow-ups are registered. The amplitude of these high-frequency pressure 

oscillations in the cavern is very small, however, it is in this narrow region that the mode with 

the formation of pressure pulses on the target screen, the amplitude of which significantly 

exceeds the amplitude of low-frequency pulses is realized. It is clear that for appendixes such a 

flow regime is very favorable. Previously, the regime with an unstable Rayleigh-Taylor cavern 

was observed in the flow with the central position of the cavern, while here it takes place at the 

interaction of the central jet with the walls of the tapered nozzle at the generator outlet. Proof of 

the existence of such a regime was the solution of the plane problem of the interaction of a finite 

jet bounded from below by a plane wall (plane of symmetry) with an inclined plate at different 

pressures on the surfaces of the jets above and below the inclined plate.  Similar to the plate 

gliding problem, a flow scheme with jet separation was adopted. The problem has been solved 

exactly by TFCP methods using quasi-double-joint-periodic theta functions. The analysis of the 

solution shows that the Rayleigh-Taylor (R-T) instability of the jet boundary takes place near the 

limiting flow when the thickness of the return jet turns to zero (the jet touches the inclined plate 

at some point above the disruptive edge of the plate). The obtained solution, in particular, 

explains the narrowness of the range of values of the dimensionless pressure coefficient in the 

cavern Cd, at which high-frequency auto oscillations take place. Estimates have shown that, in 

the presence of an unstable boundary, the development of wave structures may well lead to the 

destruction of the jet into fragments. For the plane problem, the dependences of the limiting flow 

parameters on the plate inclination angle and the width of the gap between the plate edge and the 

plane wall are obtained. 

 
1. RESEARCH OF AUTO-OSCILLATORY MODES OF FLOW IN AXISYMMETRIC 

GENERATOR OF PULSE JETS 

1.1 Description of the experiment 



Previously, on a flat experimental setup [9, 10], a flow with the formation of a ventilated 

cavern behind a cavitator plate (or wedge) in the central part of a two-phase flow was modeled. 

Here, in the axisymmetric case, the flow with a liquid jet in the central part of the flow is organized. 

Fig. 1 shows a scheme of axisymmetric two-phase flow in the stationary regime. From the pressure 

pipe 1 the liquid through the hole in the washer (cavitator) 2 enters the chamber 3, into which the 

air is blown. From the chamber 3 there is a smooth transition to the cylindrical part of the outlet 

nozzle 4, which ends with a conical constriction 5. The jet flows into the tank (not shown on the 

scheme) where a screen (disk) 6 is installed, in the center point of which there is a hole for pressure 

measurement.  In the course of the experiment the oscillograms of pressure in the supply line (in 

front of the washer-cavitator 2) p0, in the cavern 3 behind the cavitator pk, in the central point of 

the screen 6 - pm are recorded (pressures are measured relative to atmospheric pa). Liquid (water) 

was supplied to the unit through a ~1.5 m long steel pipeline (not shown in the scheme), from an 

air-cushioned stilling tank with a total volume of 50 liters. The diameter of the washer at the 

generator inlet D =10 mm, the inner diameter of the cylindrical part of the nozzle 4 also 10 mm. 

The distance from the nozzle cutoff to the screen 6 could be varied. In some experiments, the inlet 

washer 2 was replaced by a conical confuser. The element base and instruments for measuring 

experiments are given in [9].  

1.2 Influence of outlet section diameter 

Fig. 2-5 shows the influence of the nozzle outlet cross-section diameter on the character of 

auto oscillations for the head pressure P0 – 0.15 MPa. Parameters of the generator channel: total 

length 57 mm (from the inlet washer to the nozzle shear), end conical nozzle with a transition from 

the diameter of the cylindrical part of the nozzle 10 mm to the outlet diameter d, distance to the 

target disk 25 mm. The following dimensionless parameters were determined in the experiments: 

cavern pressure coefficient Cd = Pk/P0, Struhal number, Sh= f D V∞ , blow-up coefficient Cq = 

Qg/Ql, where Qg is the volumetric flow rate of gas reduced to pressure Pk, Ql is the liquid flow rate.  

The magnitude of pressure fluctuations in the forechamber A0 and in the cavern Ak, and the intensity 

of shock pulses on the screen Am, are related to the head pressure p0. Large shafts P0 and Pk denote 

time-averaged overpressures in the forechamber and in the cavern, 02V P∞ = ρ , f is the pulsation 

frequency, the oscillation sweep was also determined as the average value of the difference 

between maxima and minima at intervals equal to the oscillation period 1/f. The diameter of the 

jet flowing out of the washer hole is 7.7 - 8.4 mm (depending on the Reynolds number). An 

important factor here is the ratio of the nozzle outlet diameter to the jet diameter. At an outlet 

diameter of 8 mm, the jet at steady-state flow interacts weakly with the nozzle walls and at small 

blow-ups there is actually a direct flow from the hole in the washer into the atmosphere (low values 

of Cd, no auto oscillations), however, at significant blow-ups (Cq >15) and in this case low-



frequency auto oscillations begin to develop and the Cd coefficient increases   (Fig. 2, 4). It can be 

seen that in the regime of developed low-frequency oscillations the pressure coefficients in the 

cavern for exit diameters of 6 and 7 mm practically coincide, for the diameter of 5 mm the pressure 

coefficient increases. 

Fig. 3 shows the dependences of the Struhal number on the blow-up coefficient Cq for the 

outlet nozzle diameters d = 8, 7, 6, 5 mm. The vertical scale was chosen so that the low-frequency 

mode of the auto-oscillations could be clearly seen (the second part of the paper is devoted to high 

frequencies at small blow-ups). It can be seen that at d = 8 mm the auto-oscillation mode occurs 

at Cq > 16. The oscillation frequency decreases with decreasing nozzle diameter, and for d = 6 and 

7 mm, the results for Sh and for Cd are almost the same. The change in the frequency of auto-

oscillations at other diameters of the outlet section can be related to the change in the pressure 

coefficient Cd, since it was previously shown [11, 12] that the velocity of wave propagation along 

the jet coincides with the velocity of the stationary jet. 

Fig. 4 shows the dependence of the intensity of pressure pulsations in the cavern at P0 = 
0.15 MPa for the same four diameters of the nozzle outlet section. At d = 8 mm autocolevations begin to 

develop only at Cq > 15, in the range of Cq from 10 to 20 (where, by analogy with the flat problem, 

the mode of oscillations without gas ejection into the region in front of the cavitator should be 

preserved) the intensity is greater the smaller the diameter of the outlet section, however, in the 

range of 5-7 mm the intensity of autocolevations (Ak/P0) weakly depends on the outlet diameter. 

Fig. 5 shows the dependence of the average screen impact intensity Am/P0 on Cq. It can be seen 

that at d = 8 mm the impact is negligible, with the highest impact at d = 7 mm. In the low-frequency 

generation mode, the pulse amplitude increases with increasing underblow and reaches a 

maximum when switching to the mode with gas ejection in the region in front of the cavitator.  

1.3 Dependence of intensity of the jet impact on the screen on the distance to the screen 

Figs. 6-9 presents the results of measurements of the parameters of the auto-oscillatory 

mode of flow in the channel at the total length of the axisymmetric channel 57 mm, the length of 

the cylindrical part of the nozzle 11 mm, the end conical nozzle with a transition from the diameter 

of 10 mm (cylindrical part of the nozzle) to the exit diameter of 6 mm at the head pressure P0 = 

0.15 MPa, at distances to the target disk Lm varying from 25 to 250 mm (4.17 -41.7 caliber of the 

nozzle exit cross-section).  From the presented in Figs. 6-8 it can be seen that in the selected range 

of distances to the target, it does not affect the flow regime in the channel. The closeness of the 

curves indicates good repeatability of the experimental regimes. Depending on the value of the 

blow-up coefficient Cq the flow in the generator goes through several stages. In the region Cq<10 

, with the increase of underblow, Cd grows, the development of the cavern behind the cavitator 

occurs, and there are no low-frequency pressure fluctuations in the cavern. As the cavern closure 



region approaches the nozzle outlet cross-section, a high-frequency mode of autoconvulsions may 

occur, the nature of which differs from the low-frequency mode (this will be discussed below). At 

Cq >10 a low-frequency auto-oscillation mode develops. It can be seen that here the pressure 

coefficient Cd changes very slowly with increasing blow-up (see Fig. 6), the frequency is also 

almost constant (see Fig. 7). This can be explained by the fact that the speed of the waves on the 

surface of the cavern is equal to the speed of stationary fluid flow and is determined by the value 

Cd, and the time of existence of these shafts by the length of the channel from the diaphragm-

cavitator to the nozzle outlet section is a constant value in this series of experiments. At this stage, 

the intensity of pressure fluctuations in the cavern increases, as well as the intensity of the unsteady 

jet impact on the target. In the region Cq > 20, the frequency of auto oscillations begins to fall, Cd 

increases, and the analysis of oscillograms shows that here the mode with ejection of portions of 

the blown gas into the region in front of the cavitator develops. From the data of Fig. 9, it follows 

that somewhere in the beginning of this region is the maximum impact of liquid portions on the 

target. The data of Fig. 9 show that the maximum intensity of pressure pulses corresponds to the 

initial stage of transition to the mode with gas ejection into the space in front of the cavitator. At 

small distances (25 mm is 4.17 caliber of the nozzle outlet section), the amplitude of pressure 

pulses on the target exceeds the liquid head pressure Р0 by a maximum of 3.5 times.  It also 

noticeably exceeds the intensity of pressure pulsations in the cavern (see Fig. 8). As the distance 

to the target increases, the intensity of pressure pulses on the screen decreases. Approximations of 

the dependence of this intensity for some values of Cq (in the region of growth of the intensity of 

autocolevations) show that the intensity of the impact on the obstacle decreases approximately in 

proportion to the square root of the distance to it. 

      
2. HIGH-FREQUENCY AUTO OSCILLATIONS AS A CONSEQUENCE OF INSTABILITY 

OF THE CAVERN BOUNDARY IN THE RAYLEIGH-TAYLOR SENSE 

2.1 Example of high-frequency auto oscillations occurrence 

Once again, let us consider the process of development of cavitation auto-oscillations for 

axisymmetric flow in the generator with the diameter of the inlet washer orifice 10 mm, the 

cylindrical part of the nozzle extended by 26 mm, the diameter of the outlet of the conical nozzle 

6 mm, with the total length of the generator (washer, inlet chamber, cylindrical part, conical 

nozzle) 82 mm. Fig. 10a,b show the dependences of Sh and Am/P0 on Cq for two values of water 

head pressure. It follows from the data of Fig. 10a that there is a narrow region of relatively small 

blow-ups (Cq < 4), in which pressure oscillations with a frequency much higher than the frequency 

of oscillations developing at large blow-ups are registered. The amplitude of pressure fluctuations 

in the cavern at these modes is very small, however, the data of Fig. 10b show that it is in this 



narrow region that the mode with the formation of pressure pulses on the screen, the amplitude of 

which significantly exceeds the amplitude of pulses in the low-frequency mode, is realized. It is 

clear that for appendixes such a flow mode is very favorable. Fig. 11a shows an oscillogram of 

pressure pulsations for the flow in a long generator (82 mm) with a relatively small gas underblow 

when the high-frequency mode takes place. The pressure in the cavern рk (and in the water supply 

line p0) is almost constant, however, the amplitude spectrum (Fig. 11b) clearly shows a dominant 

frequency coinciding with the frequency of shock pressure pulsations on the screen (Fig. 11c). In 

the region of interaction of the jet with the target disk, intense periodic pulses of shock character 

are observed (Fig. 11a). The oscillation spectra show that these pulses are strictly periodic (Fig. 

11c), and their frequency coincides with the frequency of acoustic oscillations in the cavern, which 

allows us to make an assumption about the occurrence of an auto-oscillatory flow regime in the 

region of the cavern closure near the nozzle outlet section, with the cavern itself serving as a 

feedback element. 

For a generator with a central cavern (this case was studied earlier in the flat setting), a 

high-frequency autoconvulsive regime was also observed, in which the main part of the cavern 

remained stationary, and mixing of liquid with gas was observed only in the cavern tail. It was 

believed that this mixing could be related to the Rayleigh-Taylor instability of the cavern boundary 

[15]. Below, in the flat formulation, it will be shown that a similar situation can occur in the case 

of a generator with a central location of the liquid jet. 

2.2 Formulation of the plane problem 

Generally speaking, the length of a stationary cavern will increase with increasing gas 

supply,  similar to the problem of a cavern behind an obstacle in a channel [14]; in this problem, 

there is a limit number of cavitation at approaching which the length of the cavern tends to 

infinity. Since in our case the distance from the cavitator (a washer or wedge) to the outlet nozzle 

is sufficiently large, we will consider the regime of a developed cavern occupying the entire 

space from the cavitator at the inlet to the tapered nozzle at the outlet (as shown in Fig. 1). Then 

the problem can be divided into two: the first one is the jet flow from the channel with a tapered 

nozzle at the outlet (the area of the supply channel, cavitator and cavern behind it - 1, 2 and 3 in 

Fig. 1). In this case, the ratio of the expiring jet width h to the nozzle orifice width D is a 

function of the ratio of the orifice width to the supply channel width L and the nozzle angle π ν 

[14] . At 1 2ν =  , the nozzle is analogous to an axisymmetric washer. For the axisymmetric 

generator model parameters D L= 0.2 and at ν=  1/2, the ratio h D =0.616 (see [14]). When 

analyzing the second problem - the flow from the outlet nozzle 5 (see Fig. 1) - we will use the jet 

width h as the characteristic length. 



The second problem - the interaction of a jet of width h with an inclined plate 

(constriction) with an inclination angleα - will be considered using a scheme with jet separation, 

which takes place when a jet of thickness h interacts with an inclined plate. One jet of thickness∆ 

expires into space with constant pressure along a horizontally straight line (or symmetry axis), 

while the other jet (return jet of thicknessδ ) flows along the inclined plate. Let us assume that 

the wall of the internal channel of the generator is far enough from the boundary of the jet h and 

we will neglect the influence of this wall (that is, we will consider the inclined wall to be 

infinite).  

2.3 Problem on interaction of a finite jet with an inclined plate at different pressures on 

jet surfaces 

Fig. 12a shows a stationary flow along the horizontal bottom of a layer of liquid (jet) with 

width at infinity (at point E) h interacting with a semi-infinite plate AC inclined with respect to 

the bottom (inclination angleα πμ=  , when modeling a tapered nozzle μ π 2>  ). When interacting 

with the inclined plate, the flow separates - part of it flows out into the space behind the plate 

(the velocity at the boundary of this jet is assumed to be 1). The boundary of the jet starts from 

the edge of the plate A and flows along the x-axis to infinity (point D), the other part flows along 

the inclined plate to infinity (point C). The point of flow separation B is the braking point on 

plate AC. Unlike the classical hydroplaning problem [14], here the pressures in front of and 

behind the plate are different. 

The flow in the plane of the complex potential (Fig. 12b) is a flow in a strip in the 

presence of a cut that starts at the point of flow separation B. Note that the flow is bounded by 

straight lines ψ=const  , at the boundaries of the region the imaginary part of the function w is 

constant. In [15] it is shown that a flow with boundaries made of rectilinear walls separated by 

two free surfaces with different values of velocity on them can be mapped onto a characteristic 

rectangle by means of an elliptic integral, and by a suitable choice of the parameter of the elliptic 

integral it can be made so that the four points of flow separation pass to the vertices of the 

characteristic rectangle. It is shown in the same [15] that the complex velocity is a quasi-bi-

directional function. 

We will construct the solution with the help of quasi-binary-periodic theta functions, 

using a procedure close to the one described in [14] (expressions for these functions, as well as 

some useful formulas, are given in the same monograph). Note that the first function (
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others are obtained from the first one by adding a real or complex half-period to the argument. 

As a parametric plane u (Fig. 12c) we choose a rectangle with sides equal to the half-periods of 

functions  2
π  and 2

πτ  , whereπτ is the complex period of functions. Let us assume that point D of 

the physical plane passes to point u=0, point A to point 2u π=  , point E to point 2u πτ=  . The 

fourth point - point C - passes to point 2 2u π πτ= +  , where the complex parameterτ should be 

additionally determined from the problem conditions. So, the free boundaries go to the lower and 

upper sides of the rectangle, the solid rectilinear boundaries to the left and right sides.  We will 

search for the solution by the method of special points [14]. The study of the velocity hodograph 

shows that the function dw
dz has one simple zero at the braking (and branching) point B (

2u ia= π +  ), and due to the inversion with respect to the real axis in the analytic continuation, 

has a simple pole at π 2u ia= −  . In this case [14], the complex velocity can be represented as 
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As a result, for the complex velocity the following expression is obtained 
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Using this expression and the condition for the velocity at the point 2u = πτ  
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for the complex periodτ we obtain  
02 lna v

i
+

τ =
β

                                                       (1) 

Below we will consider the case when 0 1v <  (the pressure in the cavern is elevated), that is, the 
logarithm in formula (1) is negative. Since the coefficient at i must be positive (a condition for 
convergence of series by which theta functions are represented [14]), it is required that 02 lna v>  
. But the choice of the constanta is bounded from above by 2a ≤ π τ  . In the limiting case 2a = π τ    
points C and B coincide (it will be shown below that the return jet vanishes in this case), and 
from relation (1) we obtain the limiting values of the parameters, which are determined only by 
the parameters of the problem 0v  and :β 

        0ln(1 )v
τ =

π − β
 (or 0ln(1 )2 v

a
π

=
π − β

)                            (2) 

When solving the problem, it is possible to set the nozzle width and find the corresponding 

parameter a (or τ  ), but it is easier to do the opposite - to set a and get the nozzle width. The 

parameter a cannot be less than the value (2) , if the parameter a increases, the return jet will 

appear and the nozzle width will decrease. It should be added that the condition for the velocity 



at the point 2 2u = π + πτ  , when substituting into it the expression for the complex velocity 

taking into account formula (1), is fulfilled identically and does not give any additional relations.  

The derivative of the potential on the parameter dw
du can be constructed by special 

points. The details of such a construction are available in the monograph [14], let us only 

mention the special points of the function dw
du . Since the functionw has logarithmic 

singularities in the source (point  E: 2u πτ=  ) and in the sinks (points C and D:

, 0,2 2u uπ πτ= + =  , respectively), the derivative dw
du  will have simple poles at these points. 

There are two special points with violation of conformality of the mapping - these are the 

branching point of the flow B (u ia=  ) and the corner point A ( 2u = π  ) in them the function dw
du 

has zeros.  Since we have to describe the special points of the function in the whole period [π πτ,  

], we will add a zero in the point symmetric about the axis (u ia= −  ). Taking into account the 

special points, we can make the following combination of theta functions: 

2 2 2
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This function is analytic and has simple poles and zeros corresponding to our flow in the entire 

rectangle  [π πτ,  ], and by virtue of the periodicity of theta functions describes singularities in the 

entire spaceu . Here 1N  is a real constant.  

The constant 1N  , as well as the thickness of jets δи∆ , let us determine using a formula that 
relates the intensities of sources (jets) at points E, C and D to the deductions of the function dw

du 
at these points, for example, at point E ( 2u = πτ  ) there is a source with intensity 04hv  (the fourth 
part of this source is the intensity of the incoming jet 0hv  ).  The deduction of the function dw

du 
at point E is related to the intensity of the source by the formula 

2 02 Re 4dwi s i hvduπτ
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Using the expression for the deduction of the complex function dw
du with a zero-converting 

function in the denominator (the function 4ϑ  has zero of the first order at the point 2u = πτ  ), we 
obtain the following expression for the deduction at the point 2u = πτ  
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Using the properties of theta functions and the formula for the derivative 1 2 3 4ϑ = ϑ ϑ ϑ′  (here the 
argument of functions u = 0), we obtain the formula relating the constant 1N  to the jet width h: 

2
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Doing the same procedure for point D ( 0u =  ), where there is a runoff of intensity 4 0v∆  , and using 
the law of conservation of mass, we obtain the following expressions for the thickness of the jets: 
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Note that the functions 2 3и ϑ ϑ  of the imaginary argument have real values, and at 2a = π τ  
(given that 1 4

2 3( 2) q−ϑ πτ = ϑ  and 1 4
3 2( 2) q−ϑ πτ = ϑ  ) the thickness of the backflow reverses to 

zero. 

2.4 Determinations of geometric characteristics of the flow 

Let's introduce the function 
22 2 2

1
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The coordinate of the flow separation point B in the physical plane B B Bz x i y= +  can be 
found by calculating the integral 
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Let's choose as a curve connecting the points  and 2 iаπ +  the line . For numerical 
solution it is convenient to pass to the system of equations 

[ ]

[ ]

Im ( 2 )

Re ( 2 )

dx f id
dy f id

= − π + η
η

= π + η
η

.           (4) 

The system (4) is solved with initial conditions at [ ]0; 0, 0 наинтервале 0,x y aη = = = η ∈ . 
To determine the width of the gap between the plate edge and the horizontal plane ED (the 

width of the nozzle outlet section d), we find the coordinate of some point  , lying on the line 

E, D (Fig. 12c).  For definiteness, let the point  be  and let the integration curve in the 

planeu be a straight line connecting the points A and : ( 4 2)η = τ π − ξ  . For a complex variable 

we can write ( 4 2)u i= ξ + τ π − ξ  . Considering these formulas and separating the real and 

imaginary parts, we obtain a system of equations 

[ ] [ ]

[ ] [ ]

Re ( ) Im ( )2

Im ( ) Re ( )2

dx f u f ud
dy f u f ud

τ
= +

ξ

τ
= −

ξ

  .         (5) 

The system (5) is integrated with initial conditions: 2; 0, 0x yξ = π = =  . Integration is performed 
on the interval [ ]2,0ξ ∈ π . Let us denote the end point on the sloping line (at 0ξ =  ): ,n nx y , then we 
can determine the nozzle width: nd y= . Setting the parameter a equal to the limiting value (2), 
we obtain the limiting nozzle width at the given β0( 1),v ≤  , the jet thickness h can be set equal to 
1. When increasing the parameter a, the width of the outlet nozzle will decrease and there will be 
a return jet of liquid with width δ. 

To determine the shape of the jets, integrating along the horizontal sides of the auxiliary 
rectangle yields quite simple equations:  

[ ]

[ ]

Re ( )

Im ( )

dx fd
dy fd

= ξ
ξ

= ξ
ξ

 for jet A, D      
Re ( 2)

Im ( 2)

dx f id
dy f id

 = ξ + π τ ξ

 = ξ + π τ ξ

   for E, C. (6) 

 
For jets A, D at ξ π 2; 0, 0;x y= = =  the integration is carried out over the interval [ ]ξ π 2,0∈  with 

the coordinates of the jet points given in some step along ξ. It is somewhat more difficult to 

determine the coordinates of points at the boundary C, E (cavern boundary) here the integration 

2π 2u iπ η= +

А′

А′ 4u πτ=

А′



along CE was carried out with accuracy to the complex constant, which was determined from 

satisfaction of asymptotic conditions at the remote points E and C (that is, the jet boundary should 

extend to jets of known thickness - h and δ ) . 

2.5 Calculation results 

We will consider the case v0<1. Here, the peculiarity of the solution is that for given 

physical parameters (α π β= -  - angle of inclination, d - width of the gap between the edge of the 

inclined plate and the flat bottom) there is a critical value of the parameter a (follows from (2), at 

which the jet (cavern) touches the inclined plate at point B, which is at a finite distance from the 

plate edge (point A). The thickness of the return jetδ is zero. The jet surface in this case is unstable 

in the Rayleigh-Taylor sense (acceleration is directed from the "light phase" to the "heavy phase"). 

Earlier it was experimentally shown [1] that the stationary boundary of the jet in this case can be 

considered as an unperturbed surface relative to which the perturbations develop. The stationary 

solution makes it possible to determine the geometrical characteristics of such a flow region and, 

involving additional hypotheses (see below), knowing the acceleration at the jet boundary, to 

estimate the parameters of Rayleigh-Taylor structures. 

Figure 13 shows the results of calculations for α=450 and d = 0.4, critical flow conditions 

here are realized at v0= 0.3  (Cd =1-v0
2 = 0.91) - curve 1 (red). The thick lines represent the inclined 

plate and the horizontal bottom (or axis of symmetry) bounding the flow. The curvature of the 

cavern boundary under critical flow conditions is such (the acceleration at the boundary is directed 

from the "light" fluid to the "heavy" fluid) that the liquid-gas interface in the surging jet is unstable 

in the Rayleigh-Taylor sense. The curvature at the EB boundary (and therefore the acceleration) 

increases monotonically from zero (at point E) to infinity at the point where the cavern closes on 

the inclined plate B, which is at a finite distance from the edge of plate A. The jet flowing outward 

is also shown in red. It can be seen that a small decrease in the cavern pressure coefficient Cd  by 

only 0.7% (curve 2), leads to a significant decrease in the instability region and then to the 

disappearance of such a region (curves 3 and 4). This indicates the narrowness of the region of 

existence of such modes, which is confirmed by experiment (Fig. 10). However, the same 

experiment shows that such modes really exist. It should be borne in mind that when Cdincreases 

beyond the critical value in the framework of the accepted model, the solution does not exist, the 

stationary jet can no longer interact with the inclined wall; in reality, the mixing process continues 

and even intensifies [2]. So the mechanism of P-T mixing can be extended into the subcritical 

region, and this regime can depend on the length of the shaft section. In Fig. 13 and further, all 

lengths are referred to the jet width h. 

      Figure 14 shows a comparison of critical flow boundaries for different d = 0.013, 0.2, 0.4, 0.6, 

0.8 (jet boundaries are shown in red). These values of d correspond to the following values of 



dimensionless velocity v0 = 0.01, 0.15, 0.3, 0.462, 0.67 or Cd = 0.9999, 0.978, 0.91, 0.787, 0.551. 

The pressure coefficient of the critical flow regime separates the regions of different types of 

autoconvulsions. It was noted earlier that low-frequency autoconvulsions occur at cavern pressure 

coefficients larger than the above critical values. Fig. 14 shows that as the nozzle width decreases, 

the critical velocity v0 decreases (the pressure in the cavern increases) and the distance between 

the cavern connection point and the nozzle edge increases. 

Fig. 15 shows the picture of free boundaries of the flow for 4 angles of plate inclination 

and for nozzle outlet section width - 0.4. For inclination angles of 30⁰, 45⁰, 45⁰, 90⁰, 135⁰ and 

nozzle width of 0.4, the critical regime occurs at v0 = 0.325, 0.3, 0.263, 0.253.  It can be seen that 

the critical value of v0 (and Cd) depends weakly on the plate inclination angle, but as the angle 

decreases (less than 90⁰), the distance from the point of cavern attachment to the plate edge starts 

to increase strongly; at angles larger than 90⁰, the dependence of the flow pattern on the angle 

almost disappears. 

The dependences of the pressure coefficient and the distance from the point of cavern 

closure to the plate edge on the gap d for critical flow conditions shown in Fig. 16 show that the 

critical pressure coefficient depends weakly on the plate inclination angle and is mainly determined 

by the gap d. But the position of the cavern attachment point strongly depends on the plate 

inclination. 

In the problem of jet reversal under the action of a pressure drop [1], there was a flow 

region with constant curvature of the cavern boundary. In the considered case, the curvature of the 

cavern grows monotonically from zero at the infinitely distant point E to infinity at the point where 

the cavern joins the plate B. For qualitative evaluation, let us introduce some effective value of the 

cavern curvature radius Rc, equal to the radius of the circle touching the inclined plate at point B 

and the horizontal line Y= 1 corresponding to the jet boundary at point E (at infinity). The 

acceleration of the fluid particles on the circle can be estimated as 2
c 0= cW v R  . As the oscillogram 

(Fig. 11) shows, the high-frequency auto-oscillatory mode has a single-mode (single-frequency) 

character. For the case of single-mode mixing, a formula [16] for the velocity of Rayleigh-Taylor 

bubbles at large values of time is obtained c0.23 Wbv = λ , where the wavelength is 0v fλ =  (we 

deal with standing waves relative to the liquid), and the frequency can be related to the Struhal 

number ( )= Shcf V D∞  . Then for the velocity of the bubble motion we can write 

0
0=0.23

Sh
b

c

c

v v
v RV h

h D
∞

 

For our conditions of jet inflow through the hole of width Dcfrom a wide pipe (the ratio of 

Dc to the width of the supply pipe is 0.22) the value of h/Dc is approximately equal to 0.62, we will 

take the Struhal number from the experiment (Fig. 11): Sh=0.13. Let us estimate the penetration 



depth of the Rayleigh-Taylor bubbles Lb, related to the jet width h, for plate inclination angles 45 

and 900, by the velocity vband the time of passing the corresponding arc of a circle of radius Rc 

with velocity v0. So, the formula for the motion of P− T-bubbles is obtained under the following 

assumptions: 1) the cavern can be replaced by some effective circle, 2) the development of P− T-

structures occurs in the regime of  single-mode mixing, 3) the frequency characteristics of the 

shafts can be taken from a similar axisymmetric experiment. 

Fig. 17 shows the depth dependences of the Rayleigh-Taylor structures moving inside the 

jet for the time of passing the arc of the effective circle (with rotation by 45 and 900, red and green 

color) - solid curves. For comparison, the curves for the depth Lbb, obtained under the assumption 

that the development of structures follows the same law when the fluid moves along the plate at 

the shaft section. It can be seen that, if we evaluate the development of structures, only on the arc 

of the circle the evolution of bubbles for 45 and 900 is approximately the same, taking into account 

the shaft section for 900the difference is not noticeable, but for 450 (see dashed curve) is quite 

significant. Depending on the width of the nozzle exit cross-section, there is a maximum depth of 

penetration of the Rayleigh-Taylor structures into the jet, and the depth of this displacement is 

quite comparable to the width of the expelling jet, equal to the corresponding value of v(0) . 

 
CONCLUSION 

The research of auto-oscillatory flow modes was carried out on an axisymmetric model of 

a cavitation generator of pulse jets with a central location of a jet flowing out of an orifice in a 

diaphragm with a diameter of 10 mm. The efficiency of the generator was determined by the 

intensity of the shock impact of the expiring jets on the screen - obstacle. 

There is a maximum as a function of the nozzle outlet cross-section diameter - the highest 

impact intensity is observed at an outlet cross-section diameter of 7 mm. 

  It was found that the intensity of shock pulses on the screen as a function of the distance to 

the screen falls approximately proportional to the square root of the distance. 

A narrow region of existence of high-frequency autoconvulsions with very low intensity of 

pressure fluctuations in the cavern and significant impulse effects on the screen-obstacle was found 

at relatively small gas blow-ups. This may be related to the occurrence of the Rayleigh-Taylor 

instability of the cavern boundary with increased pressure compared to the external pressure. This 

assumption is justified by the analysis of the obtained exact solution of the plane problem on the 

interaction of a finite jet moving along a plane wall (plane of symmetry) with an inclined plate at 

different pressures on the surfaces of the advancing and expiring jets. 

It is shown that a stationary flow with an unstable Rayleigh-Taylor boundary is indeed 

realized near the limiting flow when the thickness of the return jet turns to zero and the incoming 



jet touches the inclined plate at some point above the plate's disruptive edge. The relationship 

between the cavern pressure coefficient (or cavitation number), the plate inclination angle, and the 

width of the gap between the plate disruption edge and the symmetry plane is obtained. With the 

adoption of a series of assumptions and using experimental data, estimates of the depth P− T-

stirring have been made, showing that this depth is comparable to the width of the expelling jet. 
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FIGURE CAPTIONS 

 

Fig. 1. Scheme of the axisymmetric experiment setup. 

Fig. 2. Dependence of Cd on Cq for P0=0.15 MPa, nozzle cylindrical length 11 mm, distance to 

the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8 mm). 

Fig. 3. Dependence of Sh on Cq for P0=0.15 MPa, nozzle cylindrical length 11 mm, distance to 

the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8 mm). 

Fig. 4. Dependence of Ak/P0 on Cq for P0=0.15 MPa, nozzle cylindrical length 11 mm, distance to 

the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8 mm). 

Fig. 5. Dependence of Am/P0 on Cq for P0=0.15 MPa, nozzle cylindrical length 11 mm, distance 

to the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8 mm).  
Fig. 6. Dependence of the pressure coefficient Cdon the gas flow coefficient Cq at P0=0.15 MPa 

and different distances to the target disk. 

Fig. 7.  Dependence of Struhal number on the gas flow coefficient at P0=0.15 MPa and different 

distances to the target disk. 



Fig. 8.  Dependence of the relative intensity of pressure pulsations in the cavern on the gas flow 

coefficient at P0=0.15 MPa and different distances to the target disk 

Fig. 9. Dependence of the relative intensity of impact on the target disk on the gas flow 

coefficient at P0=0.15 MPa and different distances to the target. 

Fig. 10. Dependence of Sh (a), and relative intensities on the screen (b) on the gas blow-up ratio 

for a nozzle with a cylindrical length of 36 mm and an outlet cross-section of 6 mm at head 

pressure P0= 0.15 MPa (solid lines) and 0.2 MPa (dashed lines). 

Fig. 11. Oscillogram of the high-frequency mode at P0=1.54 atom, Cq=4.5, D=10 mm, with 

nozzle length of 36 mm, with an outlet section of 6 mm diameter (a); mplitude-frequency spectra 

of pressure pulsations on the screen (b) and in the cavern (c). The amplitudes are normalized by 

the maximum value. 

Fig. 12. Flow in the physical plane z x=+ iy (a), plane of complex. Potential w i= φ + ψ (b), 

auxiliary plane u i= ξ + η   (c). 

Fig. 13. Free boundary picture atα =45⁰ and d= 0.4, t. A is the plate edge, B is the point where 

the cavern joins the plate. 1 critical flow, v0=0.3 (Cd=0.91), 2 – v0=0.31 (Cd=0.904), 3 – v0=0.33 

(Cd=0.891), 4 –  v0=0.4 (Cd=0.84). 

Fig. 14. Free boundary picture for plate tilt angle 45⁰ and d=0.013, 0.2, 0.4, 0.6, 0.8.  

Fig. 15. Free boundary picture at the critical flow regime for d=0.4 and plate inclination angles 

of 30⁰, 45⁰, 90⁰, 135⁰ (1-4, respectively). 

Fig. 16. Dependences of the critical pressure coefficient (Cd) and the distance from the cavern 

closure point B(L) to the plate edge on the gap width d/h under the critical flow regime for 

inclination angles of 45⁰ and 90⁰. 

Fig. 17. Dependence of the penetration depth of Rayleigh-Taylor structures Lb/ Lbb on the exit 

section width d/h for plate inclination angles of 45 and 90⁰. 
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