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Abstract. Research of liquid jet flows in the presence of a ventilated cavern with a negative
cavitation number, conducted at the Institute of Mechanics of Moscow State University, has shown
that under certain conditions in the hydraulic system cavitation auto-oscillations with high
intensity of pressure pulsations occur. The paper presents the results of research of an
axisymmetric model of a pulse jet generator with liquid jet flow through the central orifice in the
diaphragm and with peripheral gas blow-up behind the diaphragm. The two-phase medium
flowing outward was realized through a tapered conical nozzle. Research on the influence of the
generator parameters as well as the distance to the screen wall on its efficiency was carried out. A
narrow region of relatively small blow-ups was found, in which pressure fluctuations with high
frequency are registered, and the amplitude of pressure shock pulses on the screen noticeably
exceeds the amplitude of pulses in low-frequency modes of generation. This mode may be a
consequence of the development of two-phase structures at the unstable boundary of the jet during
its interaction with the walls of the tapered nozzle. Proof of the possibility of the existence of such
a flow regime was the solution of a plane problem on the interaction of a finite jet with an inclined
plate at different pressures on the jet surfaces. The problem is solved exactly by TFCP methods

using quasi-binary-periodic theta functions.
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INTRODUCTION

Research of jet fluid flows in the presence of a ventilated cavern with a negative cavitation
number, conducted at the Institute of Mechanics of Moscow State University [1-3] showed that
under certain conditions in the hydraulic system there are cavitation auto-oscillations with high
intensity of pressure pulsations both in the cavern and in the region upstream. The possibility in
principle of using the auto-oscillation mode to create periodic pulse jets when flowing from a
tapered nozzle into the atmosphere was shown. The most obviously application of the pulse jet
generator can be found in the technologies of water-jet mining [4]. To obtain jets with very high
parameters, pulse water cannons (the liquid receives impulse due to the impact of a piston
accelerated by powder gases) and hydrocannons (the liquid in the shaft is accelerated together with
the piston) are usually used. The scheme without piston pulse water cannon has the closest relation
to the topic considered in the article: the liquid mass is accelerated directly by gas. Calculations
and experiment [4, 5] have shown that the velocity of such jets can reach 1600 m/s with a
sufficiently large range when flowing both into the air and into the space flooded with water.

In plants using pulsating jets, there is a noticeable increase in productivity and, at the same
time, a decrease in the specific energy intensity of material destruction and a decrease in water
consumption, which ensures the permissible moisture content of the extracted mineral. In [6] a
review of devices capable of providing pulsation mode of operation of jet plants is given. As a
rule, mechanical devices are used in such installations to organize pulsating modes of operation.
However, there are known ways to create pulse jets without using mechanical devices - first of all,
these are pulse jet generators that use cavitation auto-oscillations at occurrence of natural (steam)
cavitation in a Venturi tube [7]. The operation of such generators assumes a significant pressure
drop at the inlet and outlet of the Venturi tube and starts at rather high head pressures sufficient
for the development of vapor cavitation in the channel of the Venturi tube. For the generator
scheme studied here, the presence of a ventilated cavern behind the cavitator is fundamental, the
character of the flow changes: intensive auto-oscillations occur at small pressure drops on the
cavitator, the energy of impulse jets includes not only the liquid head, but also the work of
compressed gas. As aresult, developed cavitation autocolevations begin already at small (less than
0.01 MPa) head pressures. Note that in generators using natural cavitation in a Venturi tube, the
presence of an outlet tapered nozzle is not fundamental (the generator works effectively without
such a nozzle [8]), while in a scheme with a ventilated cavern, the presence of an outlet nozzle (or
other resistance) is fundamental.

The question of generating periodic pulsed jets using cavitation auto-oscillations was
previously studied in a planar formulation [9]. However, for practical purposes, the axisymmetric

formulation of the experimental problem is closer. Further research was carried out on an



axisymmetric model of the unit, and, at the first stage, a technologically simpler configuration with
the liquid jet flowing through the central hole in the diaphragm and with peripheral gas blowing
was produced (in the flat formulation, the flow with a central ventilated cavern was modeled).
Experiments, showed that low-frequency auto oscillations also occur in this configuration, but at
slightly higher coefficients of gas underblow than in the flat model with a central cavern [3], the
intensity of shock pulses was somewhat lower than in the flat setup. Research on the influence of
nozzle parameters on the generator efficiency was carried out, and the dependence of the intensity
of shock pulses on the distance to the wall-screen was investigated.

Experiments have shown that there is a narrow region of relatively small blow-ups in
which pressure fluctuations with a frequency much higher than the frequency of fluctuations
developing at large blow-ups are registered. The amplitude of these high-frequency pressure
oscillations in the cavern is very small, however, it is in this narrow region that the mode with
the formation of pressure pulses on the target screen, the amplitude of which significantly
exceeds the amplitude of low-frequency pulses is realized. It is clear that for appendixes such a
flow regime is very favorable. Previously, the regime with an unstable Rayleigh-Taylor cavern
was observed in the flow with the central position of the cavern, while here it takes place at the
interaction of the central jet with the walls of the tapered nozzle at the generator outlet. Proof of
the existence of such a regime was the solution of the plane problem of the interaction of a finite
jet bounded from below by a plane wall (plane of symmetry) with an inclined plate at different
pressures on the surfaces of the jets above and below the inclined plate. Similar to the plate
gliding problem, a flow scheme with jet separation was adopted. The problem has been solved
exactly by TFCP methods using quasi-double-joint-periodic theta functions. The analysis of the
solution shows that the Rayleigh-Taylor (R-T) instability of the jet boundary takes place near the
limiting flow when the thickness of the return jet turns to zero (the jet touches the inclined plate
at some point above the disruptive edge of the plate). The obtained solution, in particular,
explains the narrowness of the range of values of the dimensionless pressure coefficient in the
cavern Cy, at which high-frequency auto oscillations take place. Estimates have shown that, in
the presence of an unstable boundary, the development of wave structures may well lead to the
destruction of the jet into fragments. For the plane problem, the dependences of the limiting flow
parameters on the plate inclination angle and the width of the gap between the plate edge and the

plane wall are obtained.

1. RESEARCH OF AUTO-OSCILLATORY MODES OF FLOW IN AXISYMMETRIC
GENERATOR OF PULSE JETS

1.1 Description of the experiment



Previously, on a flat experimental setup [9, 10], a flow with the formation of a ventilated
cavern behind a cavitator plate (or wedge) in the central part of a two-phase flow was modeled.
Here, in the axisymmetric case, the flow with a liquid jet in the central part of the flow is organized.
Fig. 1 shows a scheme of axisymmetric two-phase flow in the stationary regime. From the pressure
pipe 1 the liquid through the hole in the washer (cavitator) 2 enters the chamber 3, into which the
air is blown. From the chamber 3 there is a smooth transition to the cylindrical part of the outlet
nozzle 4, which ends with a conical constriction 5. The jet flows into the tank (not shown on the
scheme) where a screen (disk) 6 is installed, in the center point of which there is a hole for pressure
measurement. In the course of the experiment the oscillograms of pressure in the supply line (in
front of the washer-cavitator 2) po, in the cavern 3 behind the cavitator py, in the central point of
the screen 6 - p,, are recorded (pressures are measured relative to atmospheric p,). Liquid (water)
was supplied to the unit through a ~1.5 m long steel pipeline (not shown in the scheme), from an
air-cushioned stilling tank with a total volume of 50 liters. The diameter of the washer at the
generator inlet D =/0 mm, the inner diameter of the cylindrical part of the nozzle 4 also 10 mm.
The distance from the nozzle cutoff to the screen 6 could be varied. In some experiments, the inlet
washer 2 was replaced by a conical confuser. The element base and instruments for measuring
experiments are given in [9].

1.2 Influence of outlet section diameter

Fig. 2-5 shows the influence of the nozzle outlet cross-section diameter on the character of
auto oscillations for the head pressure Py — 0.15 MPa. Parameters of the generator channel: total
length 57 mm (from the inlet washer to the nozzle shear), end conical nozzle with a transition from
the diameter of the cylindrical part of the nozzle 10 mm to the outlet diameter d, distance to the
target disk 25 mm. The following dimensionless parameters were determined in the experiments:
cavern pressure coefficient Cqs = Py/Po, Struhal number, Sh= fD/V,, blow-up coefficient C, =
0./0), where Qq 1s the volumetric flow rate of gas reduced to pressure P, Q;is the liquid flow rate.
The magnitude of pressure fluctuations in the forechamber Ao and in the cavern A, and the intensity
of shock pulses on the screen 4., are related to the head pressure po. Large shafts Poand Prdenote
time-averaged overpressures in the forechamber and in the cavern, V,, = \/m , f1s the pulsation
frequency, the oscillation sweep was also determined as the average value of the difference
between maxima and minima at intervals equal to the oscillation period //f. The diameter of the
jet flowing out of the washer hole is 7.7 - 8.4 mm (depending on the Reynolds number). An
important factor here is the ratio of the nozzle outlet diameter to the jet diameter. At an outlet
diameter of 8 mm, the jet at steady-state flow interacts weakly with the nozzle walls and at small
blow-ups there is actually a direct flow from the hole in the washer into the atmosphere (low values

of C4, no auto oscillations), however, at significant blow-ups (Cy >15) and in this case low-



frequency auto oscillations begin to develop and the Cy coefficient increases (Fig. 2, 4). It can be
seen that in the regime of developed low-frequency oscillations the pressure coefficients in the
cavern for exit diameters of 6 and 7 mm practically coincide, for the diameter of 5 mm the pressure
coefficient increases.

Fig. 3 shows the dependences of the Struhal number on the blow-up coefficient C, for the
outlet nozzle diameters d = 8, 7, 6, 5 mm. The vertical scale was chosen so that the low-frequency
mode of the auto-oscillations could be clearly seen (the second part of the paper is devoted to high
frequencies at small blow-ups). It can be seen that at d = § mm the auto-oscillation mode occurs
at C,> 16. The oscillation frequency decreases with decreasing nozzle diameter, and for d = 6 and
7 mm, the results for Sh and for Cyare almost the same. The change in the frequency of auto-
oscillations at other diameters of the outlet section can be related to the change in the pressure
coefficient Cy, since it was previously shown [11, 12] that the velocity of wave propagation along
the jet coincides with the velocity of the stationary jet.

Fig. 4 shows the dependence of the intensity of pressure pulsations in the cavern at Py =
0.15 MPa for the same four diameters of the nozzle outlet section. At d = 8 mm autocolevations begin to
develop only at C,> 15, in the range of C, from 10 to 20 (where, by analogy with the flat problem,
the mode of oscillations without gas ejection into the region in front of the cavitator should be
preserved) the intensity is greater the smaller the diameter of the outlet section, however, in the
range of 5-7 mm the intensity of autocolevations (4x/Py) weakly depends on the outlet diameter.
Fig. 5 shows the dependence of the average screen impact intensity 4,/Poon Cy. It can be seen
that at d = 8 mm the impact is negligible, with the highest impact at d =7 mm. In the low-frequency
generation mode, the pulse amplitude increases with increasing underblow and reaches a
maximum when switching to the mode with gas ejection in the region in front of the cavitator.

1.3 Dependence of intensity of the jet impact on the screen on the distance to the screen

Figs. 6-9 presents the results of measurements of the parameters of the auto-oscillatory
mode of flow in the channel at the total length of the axisymmetric channel 57 mm, the length of
the cylindrical part of the nozzle 11 mm, the end conical nozzle with a transition from the diameter
of 10 mm (cylindrical part of the nozzle) to the exit diameter of 6 mm at the head pressure Po=
0.15 MPa, at distances to the target disk L,, varying from 25 to 250 mm (4.17 -41.7 caliber of the
nozzle exit cross-section). From the presented in Figs. 6-8 it can be seen that in the selected range
of distances to the target, it does not affect the flow regime in the channel. The closeness of the
curves indicates good repeatability of the experimental regimes. Depending on the value of the
blow-up coefficient C, the flow in the generator goes through several stages. In the region C;<10
, with the increase of underblow, Cy grows, the development of the cavern behind the cavitator

occurs, and there are no low-frequency pressure fluctuations in the cavern. As the cavern closure



region approaches the nozzle outlet cross-section, a high-frequency mode of autoconvulsions may
occur, the nature of which differs from the low-frequency mode (this will be discussed below). At
C, >10 a low-frequency auto-oscillation mode develops. It can be seen that here the pressure
coefficient Cy changes very slowly with increasing blow-up (see Fig. 6), the frequency is also
almost constant (see Fig. 7). This can be explained by the fact that the speed of the waves on the
surface of the cavern is equal to the speed of stationary fluid flow and is determined by the value
Cu, and the time of existence of these shafts by the length of the channel from the diaphragm-
cavitator to the nozzle outlet section is a constant value in this series of experiments. At this stage,
the intensity of pressure fluctuations in the cavern increases, as well as the intensity of the unsteady
jet impact on the target. In the region C,> 20, the frequency of auto oscillations begins to fall, Cys
increases, and the analysis of oscillograms shows that here the mode with ejection of portions of
the blown gas into the region in front of the cavitator develops. From the data of Fig. 9, it follows
that somewhere in the beginning of this region is the maximum impact of liquid portions on the
target. The data of Fig. 9 show that the maximum intensity of pressure pulses corresponds to the
initial stage of transition to the mode with gas ejection into the space in front of the cavitator. At
small distances (25 mm is 4.17 caliber of the nozzle outlet section), the amplitude of pressure
pulses on the target exceeds the liquid head pressure Po by a maximum of 3.5 times. It also
noticeably exceeds the intensity of pressure pulsations in the cavern (see Fig. 8). As the distance
to the target increases, the intensity of pressure pulses on the screen decreases. Approximations of
the dependence of this intensity for some values of Cy (in the region of growth of the intensity of
autocolevations) show that the intensity of the impact on the obstacle decreases approximately in

proportion to the square root of the distance to it.

2. HIGH-FREQUENCY AUTO OSCILLATIONS AS A CONSEQUENCE OF INSTABILITY
OF THE CAVERN BOUNDARY IN THE RAYLEIGH-TAYLOR SENSE

2.1 Example of high-frequency auto oscillations occurrence

Once again, let us consider the process of development of cavitation auto-oscillations for
axisymmetric flow in the generator with the diameter of the inlet washer orifice 10 mm, the
cylindrical part of the nozzle extended by 26 mm, the diameter of the outlet of the conical nozzle
6 mm, with the total length of the generator (washer, inlet chamber, cylindrical part, conical
nozzle) 82 mm. Fig. 10a,b show the dependences of Sh and 4,,/Po on C, for two values of water
head pressure. It follows from the data of Fig. 10a that there is a narrow region of relatively small
blow-ups (C,;<4), in which pressure oscillations with a frequency much higher than the frequency
of oscillations developing at large blow-ups are registered. The amplitude of pressure fluctuations

in the cavern at these modes is very small, however, the data of Fig. 10b show that it is in this



narrow region that the mode with the formation of pressure pulses on the screen, the amplitude of
which significantly exceeds the amplitude of pulses in the low-frequency mode, is realized. It is
clear that for appendixes such a flow mode is very favorable. Fig. 11a shows an oscillogram of
pressure pulsations for the flow in a long generator (82 mm) with a relatively small gas underblow
when the high-frequency mode takes place. The pressure in the cavern pi (and in the water supply
line poy) is almost constant, however, the amplitude spectrum (Fig. 11b) clearly shows a dominant
frequency coinciding with the frequency of shock pressure pulsations on the screen (Fig. 11c¢). In
the region of interaction of the jet with the target disk, intense periodic pulses of shock character
are observed (Fig. 11a). The oscillation spectra show that these pulses are strictly periodic (Fig.
11c¢), and their frequency coincides with the frequency of acoustic oscillations in the cavern, which
allows us to make an assumption about the occurrence of an auto-oscillatory flow regime in the
region of the cavern closure near the nozzle outlet section, with the cavern itself serving as a
feedback element.

For a generator with a central cavern (this case was studied earlier in the flat setting), a
high-frequency autoconvulsive regime was also observed, in which the main part of the cavern
remained stationary, and mixing of liquid with gas was observed only in the cavern tail. It was
believed that this mixing could be related to the Rayleigh-Taylor instability of the cavern boundary
[15]. Below, in the flat formulation, it will be shown that a similar situation can occur in the case
of a generator with a central location of the liquid jet.

2.2 Formulation of the plane problem

Generally speaking, the length of a stationary cavern will increase with increasing gas
supply, similar to the problem of a cavern behind an obstacle in a channel [14]; in this problem,
there is a limit number of cavitation at approaching which the length of the cavern tends to
infinity. Since in our case the distance from the cavitator (a washer or wedge) to the outlet nozzle
is sufficiently large, we will consider the regime of a developed cavern occupying the entire
space from the cavitator at the inlet to the tapered nozzle at the outlet (as shown in Fig. 1). Then
the problem can be divided into two: the first one is the jet flow from the channel with a tapered
nozzle at the outlet (the area of the supply channel, cavitator and cavern behind it - 1, 2 and 3 in
Fig. 1). In this case, the ratio of the expiring jet width /4 to the nozzle orifice width D is a
function of the ratio of the orifice width to the supply channel width L and the nozzle angle n v
[14] . At v =12, the nozzle is analogous to an axisymmetric washer. For the axisymmetric
generator model parameters D/L= 0.2 and at v= 1/2, the ratio h/D =0.616 (see [14]). When
analyzing the second problem - the flow from the outlet nozzle 5 (see Fig. 1) - we will use the jet

width /4 as the characteristic length.



The second problem - the interaction of a jet of width h with an inclined plate
(constriction) with an inclination angled - will be considered using a scheme with jet separation,
which takes place when a jet of thickness / interacts with an inclined plate. One jet of thicknessA
expires into space with constant pressure along a horizontally straight line (or symmetry axis),
while the other jet (return jet of thicknesss ) flows along the inclined plate. Let us assume that
the wall of the internal channel of the generator is far enough from the boundary of the jet # and
we will neglect the influence of this wall (that is, we will consider the inclined wall to be

infinite).

2.3 Problem on interaction of a finite jet with an inclined plate at different pressures on

Jjet surfaces

Fig. 12a shows a stationary flow along the horizontal bottom of a layer of liquid (jet) with
width at infinity (at point E) / interacting with a semi-infinite plate AC inclined with respect to
the bottom (inclination anglea=mnp , when modeling a tapered nozzle p > n/2 ). When interacting
with the inclined plate, the flow separates - part of it flows out into the space behind the plate
(the velocity at the boundary of this jet is assumed to be 1). The boundary of the jet starts from
the edge of the plate A and flows along the x-axis to infinity (point D), the other part flows along
the inclined plate to infinity (point C). The point of flow separation B is the braking point on
plate AC. Unlike the classical hydroplaning problem [14], here the pressures in front of and
behind the plate are different.

The flow in the plane of the complex potential (Fig. 12b) is a flow in a strip in the
presence of a cut that starts at the point of flow separation B. Note that the flow is bounded by
straight lines y=congt , at the boundaries of the region the imaginary part of the function w is
constant. In [15] it is shown that a flow with boundaries made of rectilinear walls separated by
two free surfaces with different values of velocity on them can be mapped onto a characteristic
rectangle by means of an elliptic integral, and by a suitable choice of the parameter of the elliptic
integral it can be made so that the four points of flow separation pass to the vertices of the
characteristic rectangle. It is shown in the same [15] that the complex velocity is a quasi-bi-

directional function.

We will construct the solution with the help of quasi-binary-periodic theta functions,
using a procedure close to the one described in [14] (expressions for these functions, as well as
some useful formulas, are given in the same monograph). Note that the first function (

» (2n-1)2 . : .
94(u) = 22(—1)”‘1q % sin(2n-1u q=¢6"",|g| < 1) has a simple zero at the point u=0, and the

n=1



others are obtained from the first one by adding a real or complex half-period to the argument.
As a parametric plane u# (Fig. 12¢) we choose a rectangle with sides equal to the half-periods of

functions % and ™7, , wherent is the complex period of functions. Let us assume that point D of
the physical plane passes to point u=0, point 4 to point u = % , point £ to point u = % . The
fourth point - point C - passes to point u = % + Wy , where the complex parametert should be

additionally determined from the problem conditions. So, the free boundaries go to the lower and
upper sides of the rectangle, the solid rectilinear boundaries to the left and right sides. We will
search for the solution by the method of special points [14]. The study of the velocity hodograph

shows that the function 9w, iz has one simple zero at the braking (and branching) point B (
u=n/2+ia), and due to the inversion with respect to the real axis in the analytic continuation,
has a simple pole atu = n/2 — ja . In this case [14], the complex velocity can be represented as

aw _ p puSu-m2-ia) _ , puSy(u-ia)
dz 94(u-m/2+ia) 9,(u + ia)

where 4 and B are real constants that are determined from the conditions for the velocity at points

aw aw 9,(n/2—ia)  n
u=0,— =A=1 and 4 (), u=n/2— = PrRZZTE ) _ (nh)
az|, o O / az|, 9,(n/2 + ia)

As a result, for the complex velocity the following expression is obtained

aw e—zi%u 9,(u - ia)

dz 9o(u +ia)
Using this expression and the condition for the velocity at the point u = nt/2

aw _ gibe S2(my2-i8)  ipe 2a _ "
dz - 9,(nt/2 + ia)
for the complex periodt we obtain
T:I.23+Inv0 1)

B

Below we will consider the case when v, < 1 (the pressure in the cavern is elevated), that is, the
logarithm in formula (1) is negative. Since the coefficient at i must be positive (a condition for
convergence of series by which theta functions are represented [14]), it is required that 2a > |In v0|
. But the choice of the constanta is bounded from above by 2a < =|t|. In the limiting case 2a = r|t|
points C and B coincide (it will be shown below that the return jet vanishes in this case), and
from relation (1) we obtain the limiting values of the parameters, which are determined only by
the parameters of the problem v, and :

|| = % (or2a = %1/[3‘/0)) ()

When solving the problem, it is possible to set the nozzle width and find the corresponding
parameter a (orjt| ), but it is easier to do the opposite - to set a and get the nozzle width. The
parameter a cannot be less than the value (2) , if the parameter a increases, the return jet will

appear and the nozzle width will decrease. It should be added that the condition for the velocity



at the point u = n/2 + nt/2 , when substituting into it the expression for the complex velocity
taking into account formula (1), is fulfilled identically and does not give any additional relations.

The derivative of the potential on the parameter dV oy can be constructed by special

points. The details of such a construction are available in the monograph [14], let us only

mention the special points of the function W o Since the functionw has logarithmic
singularities in the source (point E: u = % ) and in the sinks (points C and D:
u= A + 5, u=0,, respectively), the derivative dV, o will have simple poles at these points.

There are two special points with violation of conformality of the mapping - these are the

branching point of the flow B (u = ia ) and the corner point 4 (u = n/2 ) in them the function dW U

has zeros. Since we have to describe the special points of the function in the whole period [=, nt
], we will add a zero in the point symmetric about the axis (v = —ia ). Taking into account the

special points, we can make the following combination of theta functions:

dw N So(u—ia)Sy(u+ ia)Sy(u)
du T 84(U)95(u)84(u)
This function is analytic and has simple poles and zeros corresponding to our flow in the entire

rectangle [=, nt |, and by virtue of the periodicity of theta functions describes singularities in the
entire spaceu . Here N, is a real constant.

The constant N, as well as the thickness of jets 3u A , let us determine using a formula that
relates the intensities of sources (jets) at points £, C and D to the deductions of the function 9, o

at these points, for example, at point £ (u = nt/2 ) there is a source with intensity 4hy, (the fourth
part of this source is the intensity of the incoming jet hy, ). The deduction of the function W o

at point £ is related to the intensity of the source by the formula

; aw ,
2niRes;p [E} =4ihy
Using the expression for the deduction of the complex function dW o with a zero-converting

function in the denominator (the functiond, has zero of the first order at the point u = nt/2), we
obtain the following expression for the deduction at the point u = rt/2

dw| , 9o(nt/2 - ia)9,(nt/2 + ia)9y(nt/2)
Res’“/z[ﬂ‘ N g /29w 2)93(0 )

Using the properties of theta functions and the formula for the derivative 94 = 3,939, (here the
argument of functions u = 0), we obtain the formula relating the constant N, to the jet width 4:

9,(ia))?
—nN{ 93294] =2hvy . (3)

Doing the same procedure for point D (u = 0 ), where there is a runoff of intensity 4A v, , and using
the law of conservation of mass, we obtain the following expressions for the thickness of the jets:

A _[82<ia)92]2 B _1_[32(/5.)32]2

hy, \93(ia)93) "h~ 94(ia)9,



Note that the functions 9, n 95 of the imaginary argument have real values, and at a = r|t|/2
(given that 82(m/ 2)=q " 95 and 83(m/ 2)=q " 9, ) the thickness of the backflow reverses to
zero.

2.4 Determinations of geometric characteristics of the flow

B 2 ,
' . _dz _dzadw _ 2iu 95(u +ia)8,(u)
Let's introduce the function f(u) = W awdy - N,e 51(0)9a(U)94(1)
The coordinate of the flow separation point B in the physical plane zz = x5 + i y5 can be
found by calculating the integral

u=n/2+ia

zg = j f(u)du
u=m/2

Let's choose as a curve connecting the points 7/2 and n/2 + iathe line # = 77/2+in . For numerical

solution it is convenient to pass to the system of equations

g_x = —Im[ f(x/2+ in)]
& L@
an = Re[ f(n/2 + in)]

The system (4) is solved with initial conditions at n = 0; x = 0, y = O HauHTepBanen <[0,a|.

To determine the width of the gap between the plate edge and the horizontal plane ED (the
width of the nozzle outlet section d), we find the coordinate of some point A’ , lying on the line

E, D (Fig. 12¢). For definiteness, let the pointA’ be u=7z7/4 and let the integration curve in the
planeu be a straight line connecting the points 4 and : A" n =|t|(n/4 - £/2) . For a complex variable
we can write u =&+ i|t|(n/4-£/2) . Considering these formulas and separating the real and

imaginary parts, we obtain a system of equations

dx |17|

X _ Re[ f(u)]+ 1m[ f(u)]
o : BNE)
d—é = Im[ f()] - ZRe[ f(u)]

The system (5) is integrated with initial conditions:£ = n/2; x = 0, y = 0 . Integration is performed
on the interval ¢ e[n/2,0]. Let us denote the end point on the sloping line (at & = 0): x,, y,, then we
can determine the nozzle width: d = | y,,|. Setting the parameter a equal to the limiting value (2),
we obtain the limiting nozzle width at the given vy(< 1), B , the jet thickness 4 can be set equal to
1. When increasing the parameter a, the width of the outlet nozzle will decrease and there will be
a return jet of liquid with width &.

To determine the shape of the jets, integrating along the horizontal sides of the auxiliary
rectangle yields quite simple equations:

ax ax .
& L7®)] for jet 4, D %" Re[ A ’“|T|/2)] for E, C. (6)
j—gﬂm[f(a)] Z—§='m[f(é+inlrl/2)]

For jets 4, D at & = n/2; x = 0,y = 0; the integration is carried out over the interval & [n/2, O] with
the coordinates of the jet points given in some step along &. It is somewhat more difficult to

determine the coordinates of points at the boundary C, E (cavern boundary) here the integration



along CE was carried out with accuracy to the complex constant, which was determined from
satisfaction of asymptotic conditions at the remote points £ and C (that is, the jet boundary should
extend to jets of known thickness - #and 3 ) .

2.5 Calculation results

We will consider the case v<l. Here, the peculiarity of the solution is that for given
physical parameters (a=n-p - angle of inclination, d - width of the gap between the edge of the
inclined plate and the flat bottom) there is a critical value of the parameter a (follows from (2), at
which the jet (cavern) touches the inclined plate at point B, which is at a finite distance from the
plate edge (point A). The thickness of the return jetd is zero. The jet surface in this case is unstable
in the Rayleigh-Taylor sense (acceleration is directed from the "light phase" to the "heavy phase").
Earlier it was experimentally shown [1] that the stationary boundary of the jet in this case can be
considered as an unperturbed surface relative to which the perturbations develop. The stationary
solution makes it possible to determine the geometrical characteristics of such a flow region and,
involving additional hypotheses (see below), knowing the acceleration at the jet boundary, to
estimate the parameters of Rayleigh-Taylor structures.

Figure 13 shows the results of calculations for a=45° and d = 0.4, critical flow conditions
here are realized at vo= 0.3 (Cs=1-v¢*=0.91) - curve I (red). The thick lines represent the inclined
plate and the horizontal bottom (or axis of symmetry) bounding the flow. The curvature of the
cavern boundary under critical flow conditions is such (the acceleration at the boundary is directed
from the "light" fluid to the "heavy" fluid) that the liquid-gas interface in the surging jet is unstable
in the Rayleigh-Taylor sense. The curvature at the EB boundary (and therefore the acceleration)
increases monotonically from zero (at point £) to infinity at the point where the cavern closes on
the inclined plate B, which is at a finite distance from the edge of plate A. The jet flowing outward
is also shown in red. It can be seen that a small decrease in the cavern pressure coefficient Cy by
only 0.7% (curve 2), leads to a significant decrease in the instability region and then to the
disappearance of such a region (curves 3 and 4). This indicates the narrowness of the region of
existence of such modes, which is confirmed by experiment (Fig. 10). However, the same
experiment shows that such modes really exist. It should be borne in mind that when Cguincreases
beyond the critical value in the framework of the accepted model, the solution does not exist, the
stationary jet can no longer interact with the inclined wall; in reality, the mixing process continues
and even intensifies [2]. So the mechanism of P-T mixing can be extended into the subcritical
region, and this regime can depend on the length of the shaft section. In Fig. 13 and further, all
lengths are referred to the jet width 4.

Figure 14 shows a comparison of critical flow boundaries for different d =0.013, 0.2, 0.4, 0.6,

0.8 (jet boundaries are shown in red). These values of d correspond to the following values of



dimensionless velocity vo = 0.01, 0.15, 0.3, 0.462, 0.67 or C4s = 0.9999, 0.978, 0.91, 0.787, 0.551.
The pressure coefficient of the critical flow regime separates the regions of different types of
autoconvulsions. It was noted earlier that low-frequency autoconvulsions occur at cavern pressure
coefficients larger than the above critical values. Fig. 14 shows that as the nozzle width decreases,
the critical velocity vo decreases (the pressure in the cavern increases) and the distance between
the cavern connection point and the nozzle edge increases.

Fig. 15 shows the picture of free boundaries of the flow for 4 angles of plate inclination
and for nozzle outlet section width - 0.4. For inclination angles of 30°, 45°, 45° 90° 135° and
nozzle width of 0.4, the critical regime occurs at vo=0.325, 0.3, 0.263, 0.253. It can be seen that
the critical value of vy (and Cy) depends weakly on the plate inclination angle, but as the angle
decreases (less than 90°), the distance from the point of cavern attachment to the plate edge starts
to increase strongly; at angles larger than 90°, the dependence of the flow pattern on the angle
almost disappears.

The dependences of the pressure coefficient and the distance from the point of cavern
closure to the plate edge on the gap d for critical flow conditions shown in Fig. 16 show that the
critical pressure coefficient depends weakly on the plate inclination angle and is mainly determined
by the gap d. But the position of the cavern attachment point strongly depends on the plate
inclination.

In the problem of jet reversal under the action of a pressure drop [1], there was a flow
region with constant curvature of the cavern boundary. In the considered case, the curvature of the
cavern grows monotonically from zero at the infinitely distant point £ to infinity at the point where
the cavern joins the plate B. For qualitative evaluation, let us introduce some effective value of the
cavern curvature radius R, equal to the radius of the circle touching the inclined plate at point B
and the horizontal line Y= 1 corresponding to the jet boundary at point £ (at infinity). The
acceleration of the fluid particles on the circle can be estimated as W,= v§ / R; . As the oscillogram
(Fig. 11) shows, the high-frequency auto-oscillatory mode has a single-mode (single-frequency)
character. For the case of single-mode mixing, a formula [16] for the velocity of Rayleigh-Taylor
bubbles at large values of time is obtained v, = 0.23,/A W,, where the wavelength is & = v,/ f (we
deal with standing waves relative to the liquid), and the frequency can be related to the Struhal
number f= (VO0 / DC)Sh . Then for the velocity of the bubble motion we can write

Yo

R h
h oS

For our conditions of jet inflow through the hole of width D.from a wide pipe (the ratio of

%,
f=o.23v0

D to the width of the supply pipe is 0.22) the value of #/D. is approximately equal to 0.62, we will
take the Struhal number from the experiment (Fig. 11): Sh=0.13. Let us estimate the penetration



depth of the Rayleigh-Taylor bubbles L, related to the jet width 4, for plate inclination angles 45
and 90°, by the velocity vsand the time of passing the corresponding arc of a circle of radius R.
with velocity vo. So, the formula for the motion of P— T-bubbles is obtained under the following
assumptions: 1) the cavern can be replaced by some effective circle, 2) the development of P— T-
structures occurs in the regime of single-mode mixing, 3) the frequency characteristics of the
shafts can be taken from a similar axisymmetric experiment.

Fig. 17 shows the depth dependences of the Rayleigh-Taylor structures moving inside the
jet for the time of passing the arc of the effective circle (with rotation by 45 and 90°, red and green
color) - solid curves. For comparison, the curves for the depth Ls», obtained under the assumption
that the development of structures follows the same law when the fluid moves along the plate at
the shaft section. It can be seen that, if we evaluate the development of structures, only on the arc
of the circle the evolution of bubbles for 45 and 90° is approximately the same, taking into account
the shaft section for 90°the difference is not noticeable, but for 45° (see dashed curve) is quite
significant. Depending on the width of the nozzle exit cross-section, there is a maximum depth of
penetration of the Rayleigh-Taylor structures into the jet, and the depth of this displacement is

quite comparable to the width of the expelling jet, equal to the corresponding value of v().

CONCLUSION

The research of auto-oscillatory flow modes was carried out on an axisymmetric model of
a cavitation generator of pulse jets with a central location of a jet flowing out of an orifice in a
diaphragm with a diameter of 10 mm. The efficiency of the generator was determined by the
intensity of the shock impact of the expiring jets on the screen - obstacle.

There is a maximum as a function of the nozzle outlet cross-section diameter - the highest
impact intensity is observed at an outlet cross-section diameter of 7 mm.

It was found that the intensity of shock pulses on the screen as a function of the distance to
the screen falls approximately proportional to the square root of the distance.
A narrow region of existence of high-frequency autoconvulsions with very low intensity of
pressure fluctuations in the cavern and significant impulse effects on the screen-obstacle was found
at relatively small gas blow-ups. This may be related to the occurrence of the Rayleigh-Taylor
instability of the cavern boundary with increased pressure compared to the external pressure. This
assumption is justified by the analysis of the obtained exact solution of the plane problem on the
interaction of a finite jet moving along a plane wall (plane of symmetry) with an inclined plate at
different pressures on the surfaces of the advancing and expiring jets.

It is shown that a stationary flow with an unstable Rayleigh-Taylor boundary is indeed

realized near the limiting flow when the thickness of the return jet turns to zero and the incoming



jet touches the inclined plate at some point above the plate's disruptive edge. The relationship
between the cavern pressure coefficient (or cavitation number), the plate inclination angle, and the
width of the gap between the plate disruption edge and the symmetry plane is obtained. With the
adoption of a series of assumptions and using experimental data, estimates of the depth P— T-

stirring have been made, showing that this depth is comparable to the width of the expelling jet.
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FIGURE CAPTIONS

Fig. 1. Scheme of the axisymmetric experiment setup.
Fig. 2. Dependence of Cson Cq for Po=0.15 MPa, nozzle cylindrical length 11 mm, distance to

the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8§ mm).

Fig. 3. Dependence of Sh on Cgyfor Po=0.15 MPa, nozzle cylindrical length 11 mm, distance to
the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8 mm).

Fig. 4. Dependence of Ai/Poon Cg for Po=0.15 MPa, nozzle cylindrical length 11 mm, distance to
the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8 mm).

Fig. 5. Dependence of 4,»/Poon Cq for Po=0.15 MPa, nozzle cylindrical length 11 mm, distance
to the target disk 25 mm, for 4 diameters of the outlet section (5, 6, 7, 8 mm).

Fig. 6. Dependence of the pressure coefficient Cyon the gas flow coefficient Cqat Po=0.15 MPa
and different distances to the target disk.

Fig. 7. Dependence of Struhal number on the gas flow coefficient at Po=0.15 MPa and different
distances to the target disk.



Fig. 8. Dependence of the relative intensity of pressure pulsations in the cavern on the gas flow
coefficient at Po=0.15 MPa and different distances to the target disk

Fig. 9. Dependence of the relative intensity of impact on the target disk on the gas flow
coefficient at Po=0.15 MPa and different distances to the target.

Fig. 10. Dependence of Sh (a), and relative intensities on the screen (b) on the gas blow-up ratio
for a nozzle with a cylindrical length of 36 mm and an outlet cross-section of 6 mm at head
pressure Po=0.15 MPa (solid lines) and 0.2 MPa (dashed lines).

Fig. 11. Oscillogram of the high-frequency mode at Py=1.54 atom, Cq=4.5, D=10 mm, with
nozzle length of 36 mm, with an outlet section of 6 mm diameter (a); mplitude-frequency spectra
of pressure pulsations on the screen (b) and in the cavern (c). The amplitudes are normalized by

the maximum value.

Fig. 12. Flow in the physical plane z x=+ 1y (a), plane of complex. Potential w= ¢ + iy (b),
auxiliary planeu=¢ +in (c).

Fig. 13. Free boundary picture ato. =45° and d= 0.4, t. A is the plate edge, B is the point where
the cavern joins the plate. / critical flow, vo=0.3 (C4=0.91), 2 — vo=0.31 (C4=0.904), 3 — v(=0.33
(Ci=0.891), 4 — vo=0.4 (Cs=0.84).

Fig. 14. Free boundary picture for plate tilt angle 45° and d=0.013, 0.2, 0.4, 0.6, 0.8.

Fig. 15. Free boundary picture at the critical flow regime for d=0.4 and plate inclination angles
of 30°, 45°,90°, 135° (/-4, respectively).

Fig. 16. Dependences of the critical pressure coefficient (Cs) and the distance from the cavern
closure point B(L) to the plate edge on the gap width d/h under the critical flow regime for
inclination angles of 45° and 90°.

Fig. 17. Dependence of the penetration depth of Rayleigh-Taylor structures Ls/ Ly on the exit
section width d/h for plate inclination angles of 45 and 90°.
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