Открытый доступ Открытый доступ  Доступ закрыт Доступ предоставлен  Доступ закрыт Только для подписчиков

Том 47, № 7 (2017)

Article

Rolling of metal balls

Filippova M., Temlyantsev M., Peretyat’ko V., Prudkii E.

Аннотация

The rolling of balls (diameter 93 and 125 mm) of precise mass in helical grooves is simulated by means of QForm-3D and DEFORM-3D software. A model of a virtual rolling mill is created. Analysis of the stress state at characteristic points along the rolling axis focuses on the effective stress, the components of the stress tensor, and the mean normal stress. The mass of balls rolled on new and worn rollers is measured. The quality of internal metal layers is verified, and the hardness of rolled balls over the vertical and horizontal symmetry axes is measured. Modeling of ball rolling shows that the hot blank (a rod of hot-rolled steel) is satisfactorily captured by the rollers. Rolling is stable, without slipping. The blank completely fills the grooves; no gaps are observed between the metal and the walls. The crosslinks between the balls are completely eliminated within the rollers. The crosslinks are cut by the rim of the rollers and pressed into the body of the ball. The individual balls continue to roll along the finishing section of the groove; the stubs of the crosslinks are smoothed; and a completely shaped ball with a smooth surface emerges from the rollers. In modeling the stress–strain state, all the components of the stress tensor are negative. In other words, all the components of the stress tensor are compressive in rolling of the balls. Statistical analysis of the data from weighing of the rolled balls (diameter 93 and 125 mm) shows that the mass deviates from the required value by no more than 1%. Measurement of the hardness over the diametric cross section of the balls shows that there is no decline in hardness in the internal layers. That indicates high quality of the ball core.

Steel in Translation. 2017;47(7):435-439
pages 435-439 views

Quality of weld seams produced with flux based on silicomanganese slag

Kryukov R., Kozyrev N., Prokhorenko O., Bashchenko L., Kibko N.

Аннотация

The use of metallurgical wastes in welding fluxes is considered. A new welding flux based on slag from silicomanganese production is proposed, along with the corresponding manufacturing technology. The quality of the weld seams is studied by metallographic analysis. The grain size and content of nonmetallic inclusions are determined. An Olympus GX-51 optical microscope is used for metallographic analysis (magnification ×100–1000). The influence of the fractional composition on the performance of the fluxes is studied. The optimal fraction is chosen, ensuring low content of nonmetallic inclusions (in particular, nondeforming silicates and oxides) in the weld seam. If 30–40% of the small fraction of welding flux is employed, the content of nonmetallic oxide inclusions in the weld seam is reduced. Metallographic analysis shows that introducing the small fraction has no effect on the structural components of the weld seam. The seam is characterized by ferrite–pearlite structure. The ferrite is present in the form of grains extended in the direction of heat transfer. The optimal content of the <0.45 mm fraction in the welding flux is 30–40%. To improve flux performance, the small fraction may be mixed with liquid glass. The use of ceramic flux produced from the dust of silicomanganese slag (<0.45 mm fraction) bound by liquid glass reduces the content of nonmetallic inclusions in the weld seam. However, increase in the content of liquid glass from 15 to 40% has little effect on the content of nonmetallic oxide inclusions in the weld seam or on the microstructure. The microstructure in the weld seam consists of pearlite and ferrite. The optimal flux consists of the small fraction with 15–20% liquid glass.

Steel in Translation. 2017;47(7):440-444
pages 440-444 views

Redistribution of carbon in the deformation of steel with bainite and martensite structures

Aksenova K., Gromov V., Ivanov Y., Nikitina E., Kosinov D.

Аннотация

Recent years have been marked by considerable increase in the use of high-strength steel—especially martensitic and bainitic steel—for the manufacture of key industrial components and structures. The high strength depends on strain hardening of the steel. It is important to understand the strain hardening of steel of different structural classes with active plastic deformation, in order to ensure specified structural and phase states and mechanical properties. In the present work, by transmission electron-diffraction microscopy, the evolution of the structure, the phase composition, and the state of the defect substructure is compared for steel samples with martensite and bainite structure in active plastic deformation to failure. After austenitization at 950°C (1.5 h) and subsequent quenching in oil (for 38KhN3MFA steel) and cooling in air (for 30Kh2N2MFA steel), multiphase structure (α phase, γ phase, and cementite) based on packet martensite (38KhN3MFA steel) and lower bainite (30Kh2N2MFA steel) is formed. Quantitative results for the structural parameters of steel in plastic deformation permit analysis of the distribution of the carbon atoms in the structure of the deformed steel. The points of localization of carbon atoms in the martensite (quenched 38KhN3MFA steel) and bainite (air-cooled 30Kh2N2MFA steel) are identified. Deformation of the steel is found to be accompanied by the destruction of cementite particles. For quenched martensitic steel, the total quantity of carbon atoms in the solid solution based on α and γ iron is reduced, while their content at structural defects is increased. The redistribution of carbon atoms in the bainitic steel with increase in the strain involves the increase in the quantity of carbon atoms in the α iron, defects in the crystalline structure, and cementite at the intraphase boundaries; and the decrease in the content of carbon atoms in the cementite particles within the bainite plates and the γ iron.

Steel in Translation. 2017;47(7):445-448
pages 445-448 views

Oxidation of molten impurities in converters by means of combustion flames: Thermodynamic principles. 1. Thermodynamic analysis of processes in natural-gas combustion

Solonenko V., Protopopov E., Feiler S., Yakushevich N.

Аннотация

In the production of steel, as the productivity rises and the resource and energy consumption declines, improvements in converter design are required to ensure preliminary scrap and batch heating and to intensify redox processes in the liquid bath and exhaust-gas combustion above the bath, without impairing the durability of the injection systems and the converter lining. The use of fuel–oxygen combustion flames in the converter resolves numerous technological problems. The hydrodynamics in the reaction zones and in the liquid bath may be greatly changed by fuel combustion in the converter’s working space with jet formation or by means of submersible combustion flames. In the present work, thermodynamic methods are used to analyze the dynamics of gaseous-fuel combustion and the oxidation of elements in the converter bath on interaction with high-temperature combustion products. The interaction of the combustion flame and chemical elements in the converter bath is calculated for equilibrium conditions. The use of the combustion flames is found to change the composition of the gas phase in the converter’s working space (above the bath), which contains H2 and H2O in addition to the traditional components associated with oxygen injection: O2, CO, CO2. The presence of H2 and H2O changes the thermal conditions and oxidative properties of the gas phase. In the combustion of gas–oxygen fuel, the optimal composition of the initial gas mixture (natural gas + oxygen) must correspond to the ratio 100% CH4 + 69% O2. The oxidation product is gaseous phase consisting of 40% CO2 + 60% H2O. The total enthalpy of combustion of the gas–oxygen fuel at converter temperatures, with an oxygen excess greater than 1.0 (up to 2.0), is about 200 kJ per mole of the initial reagents. In the oxidation of methane by carbon dioxide, the total enthalpy of combustion is between–7 and–14.5 kJ/mol of initial reagents at 1800 K. The process becomes endothermal at temperatures above 2000 K: ΔH2200 = 7.7–15.4 kJ/mol. In the oxidation of natural gas by water vapor, ΔH1800–2200 = 19.5–70 kJ/mol. Thus, flame temperatures above 1800 K may only be attained in the oxidation of methane by oxygen. The use of air, carbon dioxide, or water vapor as the oxidant does not yield the required thermal effect.

Steel in Translation. 2017;47(7):449-455
pages 449-455 views

Systematic processing of iron-ore waste in mining regions

Novichikhin A., Shorokhova A.

Аннотация

Management of the stepwise processing of iron-ore waste in mining regions ensures rational resource utilization by introducing waste-free and low-waste technologies, with subsequent conversion of the reclaimed land to recreation areas. A procedure that may be used by operational enterprises has been developed, including the sequence of operational steps, charts for tailings recovery and preparation of the equipment, and schedules. The steps run in parallel and include waste processing, recultivation, and the solicitation and selection of proposals for the creation of recreation areas. Waste processing and land reclamation proceed while the enterprise is in operation. The recreation areas go into operation after the enterprise has closed. Management of the stepwise processing of iron-ore waste at enterprises that have closed involves the development of funding sources for waste processing and land reclamation: this will include sale of the existing resources (buildings and equipment) and approaches to outside investors, including the state. With insufficient funding, some of the iron-ore waste may be used as construction materials or filler in the reclamation program. Management of the stepwise processing of iron-ore waste for ongoing projects includes periodic monitoring of the waste generation and damage to the ground cover. Existing technologies for waste utilization and recultivation of the affected land are applied. Periodic monitoring prevents environmental damage. Recreation areas are created while the enterprise is functioning, and go into use after it has closed. On the basis of these management procedures, proposals are made for the introduction of waste-free and low-waste technologies in the Tashtagol region of Kemerovo Oblast. Such technologies are simulated by means of SciLab software. For purposes of selection, the proposals are ranked.

Steel in Translation. 2017;47(7):456-462
pages 456-462 views

Web technology in automated information and modeling systems for metallurgical processes

Gurin I., Lavrov V., Spirin N., Nikitin A.

Аннотация

The software in information systems used by engineering personnel at metallurgical enterprises is considered. Such software operates automated workstations, support systems for decision making, information and modeling systems, expert systems, and so on. Typically, the software takes the form of desktop applications written in high-level programming languages (Visual C#, Visual Basic, etc.). The analysis of technological information from the enterprise’s database-management server entails the solution of programming problems, systems of differential equations, and mathematical-physics problems, for example. Such problems are unsolvable by the standard general-purpose programming languages. Therefore, the development of information and modeling systems requires access to outside software, such as Microsoft Excel and MATLAB. Interaction with Microsoft Excel depends on COM Interop technology, which requires the installation of Microsoft Office on each client computer. Interaction with MATLAB requires the preliminary assembly of a library in MATLAB Compiler and its connection to the program. MATLAB Runtime freeware must be installed on the client computer. However, desktop applications using Windows Forms do not meet the requirements of industrial information systems in terms of functionality, accessibility, and cross-platform compatibility. Accordingly, new technologies must be found for the creation of information systems. The best approach is the construction of web applications based on the ASP.NET MVC framework, which permits the transfer of mathematical libraries and modules for interaction with Microsoft Excel and MATLAB from Windows Forms, without modification. The structure of the web application employed in the development of information-system software is described. The web page employed has the following functional regions: the logo and title of the current page, the session-status menu, the function menu, group operations, notifications, and the working area.

Steel in Translation. 2017;47(7):463-468
pages 463-468 views

Blast-furnace operation with pulverized-coal injection and with chunk anthracite

Lyalyuk V., Tarakanov A., Kassim D., Otorvin P., Pinchuk D.

Аннотация

In order to replace expensive coke, various fuels are added to the blast sent to the blast furnace: pulverized coal, natural gas, coke-oven gas, fuel oil, etc. A less common alternative is to introduce chunk anthracite through the charge hole. The use of chunk anthracite may considerably reduce the coke consumption and the production costs of the hot metal in circumstances where pulverized-coal injection is not employed and its introduction would require the use of high-quality iron ore and coke and also special preparations of the furnace and the associated systems. Chunk anthracite proves especially effective where there are constraints on the furnace productivity on account of production problems, the furnace is switched to slower operation, and plant economics must be improved.

Steel in Translation. 2017;47(7):469-472
pages 469-472 views

Temperature distribution of the gas flux in blast furnaces

Semenov Y.

Аннотация

The distribution of the temperature variation of the gas flux in the peripheral zone over the height (from the bosh to the upper levels of the shaft) and the temperature above the charge surface over the furnace radius was investigated in 2006 at a blast furnace at Metinvest Holding LLC, in various conditions: with gas-free charge and a wet blast; and with natural gas and/or pulverized-coal injection.

Steel in Translation. 2017;47(7):473-477
pages 473-477 views

Influence of meniscus fluctuations in the mold on crust formation in slab casting

Smirnov A., Kuberskii S., Smirnov E., Verzilov A., Maksaev E.

Аннотация

By analyzing the development of standing waves and surges at the metal meniscus in the mold and their influence on crust formation, it is established that wave processes in the mold may be responsible for accidents and affect billet quality.

Steel in Translation. 2017;47(7):478-482
pages 478-482 views

Lubricant action of emulsions in rolling: Theory and practice

Mazur V., Timoshenko V.

Аннотация

The lubricant action of emulsion in rolling is considered. The entrainment of multiphase liquids (rolling fluids) into the deformation zone in the course of rolling is analyzed. A mathematical model is proposed for the flow of emulsion to the roller–strip contact zone and its infiltration into the deformation zone. Analysis of experimental data shows that the thickness of the lubricant layer in the deformation zone is directly proportional to the viscosity and adhesive properties of the disperse medium (the oil in the emulsion) and inversely proportional to the degree of reduction and the yield point of the metal being rolled. Recommendations are made regarding the selection of rolling conditions and regulation of the process.

Steel in Translation. 2017;47(7):483-490
pages 483-490 views

Production of seamless bimetallic pipe for the nuclear industry

Nikitin K., Osadchii V., Saf’yanov A., Kolikov A., Bubnov K.

Аннотация

A new production technology is proposed for 351 × 36 and 426 × 40 mm bimetallic pipe consisting of 10GN2MFA steel with an internal layer of 08Kh18N10T steel (thickness 7 ± 2 mm). Such pipe may be used in nuclear-industry pipelines in place of imported products.

Steel in Translation. 2017;47(7):491-496
pages 491-496 views

Computer modelling for thin strip twin-roll casting

Naidek V., Tarasevich N., Korniets I., Tarasevich I.

Аннотация

In twin-roll casting, the influence of the heat-transfer rate at the metal–mold boundary on the thickness and the proportion of solidifying metal at the exit from the water-cooled roller mold is analyzed. The corresponding analytical curves are plotted for the production of moderate-carbon and stainless steel strip (thickness 1–6 mm). The proposed method may be used in the development of twin-roll technology and equipment.

Steel in Translation. 2017;47(7):497-503
pages 497-503 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».