Возможности регенеративной медицины и ортобиологических препаратов в лечении заболеваний верхней конечности: обзор литературы
- Авторы: Гребень А.И.1,2, Еремин П.С.3, Бялик Ю.В.3, Костромина Е.Ю.3, Парсаданян Г.К.4, Марков П.А.3, Афанасьев А.В.3, Гребень Т.Н.3
-
Учреждения:
- Российский национальный исследовательский медицинский университет им. Н.И. Пирогова
- НМИЦ реабилитации и курортологии
- Городская клиническая больница № 29 имени Н.Э. Баумана
- Городская клиническая больница № 29 им. Н.Э. Баумана
- Выпуск: Том 30, № 1 (2023)
- Страницы: 111-126
- Раздел: Обзоры
- URL: https://ogarev-online.ru/0869-8678/article/view/254196
- DOI: https://doi.org/10.17816/vto322818
- ID: 254196
Цитировать
Полный текст
Аннотация
Развитие регенеративной медицины, изучение биологии стволовых клеток и анализ механизмов действия факторов роста, содержащихся в плазме, обогащённой тромбоцитами, подтолкнули большое число исследователей к использованию ортобиологических препаратов в своей клинической практике. Целью настоящей работы было представить эффективность использования регенеративных методик и ортобиологических препаратов в лечении заболеваний верхней конечности. При подготовке обзора использована открытая электронная база данных научной литературы PubMed (MEDLINE). Поиск данных литературы произведён по следующим ключевым словам: «регенеративная медицина», «ортобиология», «кисть», «лучезапястный сустав», «плазма, обогащённая тромбоцитами», «мезенхимальные стволовые клетки», «стромально-васкулярная фракция». В статье представлены результаты использования и обоснование применения ортобиологических препаратов в лечении различных патологий кисти и верхней конечности. Применение ортобиологических препаратов и регенеративных методик в лечении заболеваний верхней конечности является безопасным и перспективным направлением. Для последующего эффективного применения клеточных продуктов необходимы проведение дальнейших исследований для оценки их долгосрочных результатов, а также разработка унифицированных протоколов их использования.
Полный текст
Открыть статью на сайте журналаОб авторах
Анастасия Игоревна Гребень
Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; НМИЦ реабилитации и курортологии
Email: aik-nastya@mail.ru
ORCID iD: 0000-0002-2423-523X
SPIN-код: 5506-1002
младший научный сотрудник, ординатор
Россия, 117997, Россия, Москва, ул. Островитянова, 1; 121099 Москва, ул Новый Арбат, д. 32Петр Серафимович Еремин
Городская клиническая больница № 29 имени Н.Э. Баумана
Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470
SPIN-код: 8597-6596
научный сотрудник
Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4Юлия Вдадимировна Бялик
Городская клиническая больница № 29 имени Н.Э. Баумана
Email: yulyabyalik@ya.ru
ORCID iD: 0009-0001-0601-9066
врач травматолог-ортопед
Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4Елена Юрьевна Костромина
Городская клиническая больница № 29 имени Н.Э. Баумана
Email: bioimed07@hotmail.com
ORCID iD: 0000-0002-9728-7938
SPIN-код: 5698-7489
кандидат биологических наук, старший научный сотрудник
Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4Гайк Каренович Парсаданян
Городская клиническая больница № 29 им. Н.Э. Баумана
Email: gaikparsadanyan@yandex.ru
ORCID iD: 0009-0008-7877-8951
врач травматолог-ортопед
Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4Павел Александрович Марков
Городская клиническая больница № 29 имени Н.Э. Баумана
Email: p.a.markov@mail.ru
ORCID iD: 0000-0002-4803-4803
SPIN-код: 7493-5203
кандидат биологических наук, старший научный сотрудник
Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4Алексей Валерьевич Афанасьев
Городская клиническая больница № 29 имени Н.Э. Баумана
Email: afaled13@mail.ru
ORCID iD: 0009-0000-8645-6292
кандидат медицинских наук, врач травматолог-ортопед
Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4Татьяна Николаевна Гребень
Городская клиническая больница № 29 имени Н.Э. Баумана
Автор, ответственный за переписку.
Email: greben72@inbox.ru
ORCID iD: 0000-0002-6001-0804
главный врач
Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4Список литературы
- Coombes B.K., Bisset L., Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials // Lancet. 2010. Vol. 376, N 9754. P. 1751–1767. doi: 10.1016/S0140-6736(10)61160-9
- Khanna A., Friel M., Gougoulias N., et al. Prevention of adhesions in surgery of the flexor tendons of the hand: what is the evidence? // Br Med Bull. 2009. N 90. P. 85–109. doi: 10.1093/bmb/ldp013
- Piazzini D.B., Aprile I., Ferrara P.E., et al. A systematic review of conservative treatment of carpal tunnel syndrome // Clin Rehabil. 2016. Vol. 21, N 4. P. 299–314. doi: 10.1177/0269215507077294
- Tsuji W., Rubin J.P., Marra K.G. Adipose-derived stem cells: Implications in tissue regeneration // World J Stem Cells. 2014. Vol. 6, N 3. P. 312–321. doi: 10.4252/wjsc.v6.i3.312
- Ramesh R., Jeyaraman M., Prajwal G.S. The prospective study on efficacy and functional outcome of autologous platelet rich plasma injection in musculoskeletal disorders // EC Orthopaedics. 2018. Vol. 9, N 12. P. 849e863.
- Yeh K.T., Wu W.T., Wang J.H., Shih J.T. Arthroscopic foveal repair with suture anchors for traumatic tears of the triangular fibrocartilage complex // BMC Musculoskelet Disord. 2022. Vol. 23, N 1. P. 634. doi: 10.1186/s12891-022-05588-z
- Karim K.E., Wu C.M., Giladi A.M., Murphy M.S. Orthobiologics in Hand Surgery // J Hand Surg Am. 2021. Vol. 46, N 5. P. 409–415. doi: 10.1016/j.jhsa.2021.01.006
- Oh J.K., Messing S., Hyrien O., Hammert W.C. Effectiveness of Corticosteroid Injections for Treatment of de Quervain’s Tenosynovitis // Hand (N Y). 2017. Vol. 12, N 4. P. 357–361. doi: 10.1177/1558944716681976
- Ippolito J.A., Hauser S., Patel J., et al. Nonsurgical Treatment of De Quervain Tenosynovitis: A Prospective Randomized Trial // Hand (N Y). 2020. Vol. 15, N 2. P. 215–219. doi: 10.1177/1558944718791187
- Zhang J., Nie D., Williamson K., et al. Selectively activated PRP exerts differential effects on tendon stem/progenitor cells and tendon healing // J Tissue Eng. 2019. N 10. P. 2041731418820034. doi: 10.1177/2041731418820034
- Everts P., Onishi K., Jayaram P., et al. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020 // Int J Mol Sci. 2020. Vol. 21, N 20. P. 7794. doi: 10.3390/ijms21207794
- Peck E., Ely E. Successful treatment of de Quervain tenosynovitis with ultrasound-guided percutaneous needle tenotomy and platelet trich plasma injection: a case presentation // PM R. 2013. Vol. 5, N 5. P. 438–441. doi: 10.1016/j.pmrj.2013.02.006
- Leppanen O.V., Karjalainen T., Goransson H., et al. Outcomes after flexor tendon repair combined with the application of human amniotic membrane allograft // J Hand Surg Am. 2017. Vol. 42, N 6. P. 474.e1–474.e8. doi: 10.1016/j.jhsa.2017.03.006
- Golash A., Kay A., Warner J.G., et al. Efficacy of ADCON-T/N after primary flexor tendon repair in Zone II: a controlled clinical trial // J Hand Surg Br. 2003. Vol. 28, N 2. P. 113–115. doi: 10.1016/s0266-7681(02)00249-8
- Lee Y.J., Ryoo H.J., Shim H.S. Prevention of postoperative adhesions after flexor tendon repair with acellular dermal matrix in Zones III, IV, and V of the hand: A randomized controlled (CONSORT-compliant) trial // Medicine (Baltimore). 2022. Vol. 101, N 3. P. e28630. doi: 10.1097/MD.0000000000028630
- Shim H.S., Park K.S., Kim S.W. Preventing postoperative adhesions after hand tendon repair using acellular dermal matrix // J Wound Care. 2021. Vol. 30, N 11. P. 890–895. doi: 10.12968/jowc.2021.30.11.890
- Liu C., Bai J., Yu K., et al. Biological Amnion Prevents Flexor Tendon Adhesion in Zone II: A Controlled, Multicentre Clinical Trial // Biomed Res Int. 2019. N 2019. P. 2354325. doi: 10.1155/2019/2354325
- Tarpada S.P., Morris M.T., Lian J., Rashidi S. Current advances in the treatment of medial and lateral epicondylitis // J Orthop. 2018. Vol. 15, N 1. P. 107–110. doi: 10.1016/j.jor.2018.01.040
- Via A.G., Frizziero A., Oliva F. Biological properties of mesenchymal Stem Cells from different sources // Muscles Ligaments Tendons J. 2012. Vol. 2, N 3. P. 154–162.
- Halpern B.C., Chaudhury S., Rodeo S.A. The role of platelet-Rich plasma in inducing musculoskeletal tissue healing // HSS J. 2012. Vol. 8, N 2. P. 137–145. doi: 10.1007/s11420-011-9239-7
- Arora K.K., Kapila R., Kapila S., et al. Management of Lateral Epicondylitis: A Prospective Comparative Study Comparing the Local Infiltrations of Leucocyte Enriched Platelet-Rich Plasma (L-aPRP), Glucocorticoid and Normal Saline // Malays Orthop J. 2022. Vol. 16, N 1. P. 58–69. doi: 10.5704/MOJ.2203.009
- Singh A., Gangwar D.S., Singh S. Bone marrow injection: a novel treatment for tennis elbow // J Nat Sci Biol Med. 2014. Vol. 5, N 2. P. 389–391. doi: 10.4103/0976-9668.136198
- Connell D., Datir A., Alyas F., Curtis M. Treatment of lateral epicondylitis using skin-derived tenocyte-like cells // Br J Sports Med. 2009. Vol. 43, N 4. P. 293–298. doi: 10.1136/bjsm.2008.056457
- Wang A., Mackie K., Breidahl W., et al. Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: mean 4.5-Year clinical follow-up // Am J Sports Med. 2015. Vol. 43, N 7. P. 1775–1783. doi: 10.1177/0363546515579185
- Lee S.Y., Kim W., Lim C., Chung S.G. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study // Stem Cells. 2015. Vol. 33, N 10. P. 2995–3005. doi: 10.1002/stem.2110
- Khoury M., Tabben M., Rolón A.U., et al. Promising improvement of chronic lateral elbow tendinopathy by using adipose derived mesenchymal stromal cells: a pilot study // J Exp Orthop. 2021. Vol. 8, N 1. P. 6. doi: 10.1186/s40634-020-00320-z
- Dolmans G.H., Werker P.M., Hennies H.C., et al. Wnt signaling and Dupuytren’s disease // N Engl J Med. 2011. Vol. 365, N 4. P. 307–317. doi: 10.1056/NEJMoa1101029
- Coleman S.R. Structural fat grafting: More than a permanent filler // Plast Reconstr Surg. 2006. Vol. 118, N 3, Suppl. P. 108S–120S. doi: 10.1097/01.prs.0000234610.81672.e7
- Hovius S.E.R., Kan H.J., Smit X., et al. Extensive percutaneous aponeurotomy and lipografting: a new treatment for Dupuytren disease // Plast Reconstr Surg. 2011. Vol. 128, N 1. P. 221–228. doi: 10.1097/PRS.0b013e31821741a
- Degreef I. Therapy-Resisting Dupuytren’s Disease: New Perspectives in Adjuvant Treatment (doctoral thesis). Leuven, Belgium: Catholic University Leuven, 2009.
- Elksniņš-Finogejevs A., Vidal L., Peredistijs A. Intra-articular platelet-rich plasma vs corticosteroids in the treatment of moderate knee osteoarthritis: a single-center prospective randomized controlled study with a 1-year follow up // J Orthop Surg Res. 2020. Vol. 15, N 1. P. 257. doi: 10.1186/s13018-020-01753-z
- Ahmad H.S., Farrag S.E., Okasha A.E., et al. Clinical outcomes are associated with changes in ultrasonographic structural appearance after platelet-rich plasma treatment for knee osteoarthritis // Int J Rheum Dis. 2018. Vol. 21, N 5. P. 960–966. doi: 10.1111/1756-185X.13315
- Matas J., Orrego M., Amenabar D., et al. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial // Stem Cells Transl Med. 2019. Vol. 8, N 3. P. 215–224. doi: 10.1002/sctm.18-0053
- Xia T., Yu F., Zhang K., et al. The effectiveness of allogeneic mesenchymal stem cells therapy for knee osteoarthritis in pigs // Ann Transl Med. 2018. Vol. 6, N 20. P. 404. doi: 10.21037/atm.2018.09.55
- Dolanmaz D., Saglam M., Inan O., et al. Monitoring Bone Morphogenetic Protein-2 and -7, Soluble Receptor Activator of Nuclear Factor-Κb Ligand and Osteoprotegerin Levels in the Peri-Implant Sulcular Fluid during the Osseointegration of Hydrophilic-Modified Sandblasted Acid-Etched and Sandblaste // J Periodont Res. 2015. Vol. 50, N 1. P. 62–73. doi: 10.1111/jre.12182
- Loibl M., Lang S., Dendl L.M., et al. Leukocyte-reduced platelet-rich plasma treatment of basal thumb arthritis: a pilot study // Biomed Res Int. 2016. N 2016. P. 9262909. doi: 10.1155/2016/9262909
- Malahias M.A., Roumeliotis L., Nikolaou V.S., et al. Platelet-rich plasma versus corticosteroid intraarticular injections for the treatment of trapeziometacarpal arthritis: a prospective randomized controlled clinical trial // Cartilage. 2021. Vol. 12, N 1. P. 51–61. doi: 10.1177/1947603518805230
- Medina-Porqueres I., Martin-Garcia P., Sanz-De Diego S., et al. Platelet-rich plasma for thumb carpometacarpal joint osteoarthritis in a professional pianist: case-based review // Rheumatol Int. 2019. Vol. 39, N 12. P. 2167–2175. doi: 10.1007/s00296-019-04454-x
- Haas E.M., Eisele A., Arnoldi A., et al. One-year outcomes of intraarticular fat transplantation for thumb carpometacarpal joint osteoarthritis: case review of 99 joints // Plast Reconstr Surg. 2020. Vol. 145, N 1. P. 151–159. doi: 10.1097/PRS.0000000000006378
- Herold C., Rennekampff H.O., Groddeck R., Allert S. Autologous Fat Transfer for Thumb Carpometacarpal Joint Osteoarthritis: A Prospective Study // Plast Reconstr Surg. 2017. Vol. 140, N 2. P. 327–335. doi: 10.1097/PRS.0000000000003510
- Froschauer S.M., Holzbauer M., Wenny R., et al. Autologous Fat Transplantation for Thumb Carpometacarpal Joint Osteoarthritis (Liparthroplasty): A Case Series with Two Years of Follow-UP // J Clin Med. 2020. Vol. 10, N 1. P. 113. doi: 10.3390/jcm10010113
- Bohr S., Rennekampff H.O., Pallua N. Cell-enriched lipoaspirate arthroplasty: a novel approach to first carpometacarpal joint arthritis // Hand Surg. 2015. Vol. 20, N 3. P. 479–481. doi: 10.1142/S0218810415720259
- Mayoly A., Witters M., Jouve E., et al. Intra Articular Injection of Autologous Microfat and Platelets-Rich Plasma in the Treatment of Wrist Osteoarthritis: A Pilot Study // J Clin Med. 2022. Vol. 11, N 19. P. 5786. doi: 10.3390/jcm11195786
- Cecchi S., Bennet S.J., Arora M. Bone Morphogenetic Protein-7: Review of Signalling and Efficacy in Fracture Healing // J Orthop Translat. 2016. N 4. P. 28–34. doi: 10.1016/j.jot.2015.08.001
- Bilic R., Simic P., Jelic M., et al. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis // Int Orthop. 2006. Vol. 30, N 2. P. 128–134. doi: 10.1007/s00264-005-0045-z
- Jones N.F., Brown E.E., Mostofi A., et al. Healing of a scaphoid nonunion using human bone morphogenetic protein // J Hand Surg Am. 2005. Vol. 30, N 3. P. 528–533. doi: 10.1016/j.jhsa.2004.12.005
- Ablove R.H., Abrams S.S. The use of BMP-2 and screw exchange in the treatment of scaphoid fracture non-union // Hand Surg. 2015. Vol. 20, N 1. P. 167–171. doi: 10.1142/S0218810415970023
- Jones N.F., Brown E.E., Vogelin E., Urist M.R. Bone morphogenetic protein as an adjuvant in the treatment of Kienbock’s disease by vascular pedicle implantation // J Hand Surg Eur. 2008. Vol. 33, N 3, P. 317–321. doi: 10.1177/1753193408090394
- Rajfer R.A., Danoff J.R., Metzl J.A., Rosenwasser M.P. A novel arthroscopic technique utilizing bone morphogenetic protein in the treatment of Kienbock disease // Tech Hand Up Extrem Surg. 2013. Vol. 17, N 1. P. 2–6. doi: 10.1097/BTH.0b013e3182712ba0
- Chen X., Jones I.A., Park C., Vangsness C.T. The efficacy of platelet-rich plasma on tendon and ligament healing: a systematic review and meta-analysis with bias assessment // Am J Sports Med. 2018. Vol. 46, N 8. P. 2020–2032. doi: 10.1177/0363546517743746
- Haunschild E.D., Huddleston H.P., Chahla J., et al. Platelet-rich plasma augmentation in meniscal repair surgery: a systematic review of comparative studies // Arthroscopy. 2020. Vol. 36, N 6. P. 1765–1774. doi: 10.1016/j.arthro.2020.01.038
- Belk J.W., Kraeutler M.J., Thon S.G., et al. Augmentation of meniscal repair with platelet-rich plasma: a systematic review of comparative studies // Orthop J Sports Med. 2020. Vol. 8, N 6. P. 2325967120926145. doi: 10.1177/2325967120926145
- Sochacki K.R., Safran M.R., Abrams G.D., et al. Platelet-rich plasma augmentation for isolated arthroscopic meniscal repairs leads to significantly lower failure rates: a systematic review of comparative studies // Orthop J Sports Med. 2020. Vol. 8, N 11. P. 2325967120964534. doi: 10.1177/2325967120964534
- Stachura A., Paskal W., Pawlik W., et al. The Use of Adipose-Derived Stem Cells (ADSCs) and Stromal Vascular Fraction (SVF) in Skin Scar Treatment-A Systematic Review of Clinical Studies // J Clin Med. 2021. Vol. 10, N 16. P. 3637. doi: 10.3390/jcm10163637
- Carstens M.H., Correa D., Llull R., et al. Subcutaneous reconstruction of hand dorsum and fingers for late sequelae of burn scars using adipose-derived stromal vascular fraction (SVF) // CellR4. 2015. Vol. 3, N 5. P. e1675.
- Carstens M.H., Pérez M., Briceño H., et al. Treatment of late sequelae of burn scar fibrosis with adi-pose-derived stromal vascular fraction (SVF) cells: A case series // CellR4. 2017. Vol. 5, N 3. P. e2404.
- Azzena B., Mazzoleni F., Abatangelo G., et al. Autologous platelet-rich plasma as an adipocyte in vivo delivery system: case report // Aesthet Plast Surg. 2008. Vol. 32, N 1. P. 155–158. Discussion 159–161. doi: 10.1007/s00266-007-9022-9
- To K., Crowley C., Lim S.-K., Khan W.S. Autologous adipose tissue grafting for the management of the painful scar // Cytotherapy. 2019. Vol. 21, N 11. P. 1151–1160. doi: 10.1016/j.jcyt.2019.08.005
- Krastev T.K., Schop S.J., Hommes J., et al. Autologous fat transfer to treat fibrosis and scar-related conditions: A systematic review and meta-analysis // J Plast Reconstr Aesthetic Surg. 2020. Vol. 73, N 11. P. 2033–2048. doi: 10.1016/j.bjps.2020.08.023
- Lee J.W., Park S.H., Lee S.J., et al. Clinical Impact of Highly Condensed Stromal Vascular Fraction Injection in Surgical Management of Depressed and Contracted Scars // Aesthetic Plast Surg. 2018. Vol. 42, N 6. P. 1689–1698. doi: 10.1007/s00266-018-1216-9
- Jan S.N., Bashir M.M., Khan F.A., et al. Unfiltered Nanofat Injections Rejuvenate Postburn Scars of Face // Ann Plast Surg. 2019. Vol. 82, N 1. P. 28–33. doi: 10.1097/SAP.0000000000001631
- Gümbel D., Ackerl M., Napp M., et al. Retrospective analysis of 56 soft tissue defects treated with one-stage reconstruction using dermal skin substitutes // J Dtsch Dermatol Ges. 2016. Vol. 14, N 6. P. 595–601. doi: 10.1111/ddg.12874
- Liu Q., Zhang N., Li Z., He H. Efficacy of autologous platelet-rich plasma gel in the treatment of refractory pressure injuries and its effect on wound healing time and patient quality of life // Clinics (Sao Paolo). 2021. N 76. P. e2355. doi: 10.6061/clinics/2021/e2355
- O’Connell B., Wragg N.M., Wilson S.L. The use of PRP injections in the management of knee osteoarthritis // Cell Tissue Res. 2019. Vol. 376, N 2. P. 143–152. doi: 10.1007/s00441-019-02996-x
- Deng Z., Long Z.S., Gong F.P., Chen G. The efficacy and safety of platelet-rich plasma in the tendon-exposed wounds: a preliminary study // J Orthop Surg Res. 2022. Vol. 17, N 1. P. 497. doi: 10.1186/s13018-022-03401-0
- Spartalis E., Tomos P., Konofaos P., et al. The effect of autologous platelet-rich plasma on bronchial stump tissue granulation after pneumonectomy: experimental study // ISRN Surg. 2013. N 2013. P. 864350. doi: 10.1155/2013/864350
- Menchisheva Y., Mirzakulova U., Yui R. Use of platelet-rich plasma to facilitate wound healing // Int Wound J. 2019. Vol. 16, N 2. P. 343–353. doi: 10.1111/iwj.13034
- Guo S.C., Tao S.C., Yin W.J., et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model // Theranostics. 2017. Vol. 7, N 1. P. 81–96. doi: 10.7150/thno.16803
- Dong C., Sun Y., Qi Y., et al. Effect of Platelet-Rich Plasma Injection on Mild or Moderate Carpal Tunnel Syndrome: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials // Biomed Res Int. 2020. N 2020. P. 5089378. doi: 10.1155/2020/5089378
- Kim H.J., Park S.H. Median nerve injuries caused by carpal tunnel injections // Korean J Pain. 2014. Vol. 27, N 2. P. 112–117. doi: 10.3344/kjp.2014.27.2.112
- Ding X.G., Li S.W., Zheng X.M., et al. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model // Asian J Androl. 2009. Vol. 11, N 2. P. 215–221. doi: 10.1038/aja.2008.37
- Cass S.P. Ultrasound-Guided Nerve Hydrodissection: What Is it? A Review of the Literature // Curr Sports Med Rep. 2016. Vol. 15, N 1. P. 20–22. doi: 10.1249/JSR.0000000000000226
- Senna M.K., Shaat R.M., Ali A.A.A. Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome // Clin Rheumatol. 2019. Vol. 38, N 12. P. 3643–3654. doi: 10.1007/s10067-019-04719-7
- Malahias M.A., Nikolaou V.S., Johnson E.O., et al. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: a placebo-controlled clinical study // J Tissue Eng Regen Med. 2018. Vol. 12, N 3. P. e1480–e1488. doi: 10.1002/term.2566
- Wu Y.T., Ho T.Y., Chou Y.C., et al. Six-month efficacy of platelet-rich plasma for carpal tunnel syndrome: a prospective randomized, single-blind controlled trial // Sci Rep. 2017. Vol. 7, N 1. P. 94. doi: 10.1038/s41598-017-00224-6
- Shen Y.P., Li T.Y., Chou Y.C., et al. Comparison of perineural platelet rich plasma and dextrose injections for moderate carpal tunnel syndrome: a prospective randomized, single-blind, head-to-head comparative trial // J Tissue Eng Regen Med. 2019. Vol. 13, N 11. P. 2009–2017. doi: 10.1002/term.2950
- Chen S.R., Shen Y.P., Ho T.Y., et al. One-Year Efficacy of Platelet-Rich Plasma for Moderate-to-Severe Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial // Arch Phys Med Rehabil. 2021. Vol. 102, N 5. P. 951–958. doi: 10.1016/j.apmr.2020.12.025
- Trull-Ahuir C., Sala D., Chismol-Abad J., et al. Efficacy of platelet-rich plasma as an adjuvant to surgical carpal ligament release: a prospective, randomized controlled clinical trial // Sci Rep. 2020. Vol. 10, N 1. P. 2085. doi: 10.1038/s41598-020-59113-0
- Kuo Y.C., Lee C.C., Hsieh L.F. Ultrasound-guided perineural injection with platelet-rich plasma improved the neurophysiological parameters of carpal tunnel syndrome: a case report // J Clin Neurosci. 2017. N 44. P. 234–236. doi: 10.1016/j.jocn.2017.06.053
- Chen L.C., Ho C.W., Sun C.H., et al. Ultrasound-guided pulsed radiofrequency for carpal tunnel syndrome: a single-blinded randomized controlled study // PLoS One. 2015. Vol. 10, N 6. Article e0129918. doi: 10.1371/journal.pone.0129918
- Ustün N., Tok F., Yagz A.E., et al. Ultrasound-guided vs. Blind Steroid Injections in Carpal Tunnel Syndrome: A Single-Blind Randomized Prospective Study // Am J Phys Med Rehabil. 2013. Vol. 92, N 11. P. 999–1004. doi: 10.1097/PHM.0b013e31829b4d72
- Stokvis A., van der Avoort D.J., van Neck J.W., et al. Surgical management of neuroma pain: a prospective follow-up study // Pain. 2010. Vol. 151, N 3. P. 862–869. doi: 10.1016/j.pain.2010.09.032
- Lutz B.S., Ma S.F., Chuang D.C., et al. Interposition of a pedicle fat flap significantly improves specificity of reinnervation and motor recovery after repair of transected nerves in adjacency in rats // Plast Reconstr Surg. 2001. Vol. 107, N 1. P. 116–123. doi: 10.1097/00006534-200101000-00017
- Guo J., Nguyen A., Banyard D.A., Fadavi D., et al. Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action // J Plast Reconstr Aesthet Surg. 2015. Vol. 69, N 2. P. 180–188. doi: 10.1016/j.bjps.2015.10.014
- Zimmermann S., Fakin R.M., Giovanoli P., Calcagni M. Outcome of Stromal Vascular Fraction-Enriched Fat Grafting Compared to Intramuscular Transposition in Painful End-Neuromas of Superficial Radial Nerve: Preliminary Results // Front Surg. 2018. N 5. P. 10. doi: 10.3389/fsurg.2018.00010
- Calcagni M., Zimmermann S., Scaglioni M.F., et al. The novel treatment of SVF-enriched fat grafting for painful end-neuromas of superficial radial nerve // Microsurgery. 2018. Vol. 38, N 3. P. 264–269. doi: 10.1002/micr.30122
- Yu T., Xu Y., Ahmad M.A., Javed R., et al. Exosomes as a Promising Therapeutic Strategy for Peripheral Nerve Injury // Curr Neuropharmacol. 2021. Vol. 19, N 12. P. 2141–2151. doi: 10.2174/1570159X19666210203161559
- Tang B.L. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers // Brain Res Bull. 2018. N 143. P. 123–131. doi: 10.1016/j.brainresbull.2018.10.008
- Wieringa P.A., Gonçalves de Pinho A.R., Micera S., et al. Biomimetic architectures for peripheral nerve repair: a review of biofabrication strategies // Adv Healthc Mater. 2018. Vol. 7, N 8. P. e1701164. doi: 10.1002/adhm.201701164
- Panayi A.C., Orgill D.P. Current use of biological scaffolds in plastic surgery // Plast Reconstr Surg. 2019. Vol. 143, N 1. P. 209–220. doi: 10.1097/PRS.0000000000005102
- Li D., Huang S., Yin Z., et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury // Neurochem Res. 2019. Vol. 44, N 8. P. 1903–1923. doi: 10.1007/s11064-019-02825-1
- Ma Z., Wang Y., Li H. Applications of extracellular vesicles in tissue regeneration // Biomicrofluidics. 2020. Vol. 14, N 1. P. 011501. doi: 10.1063/1.5127077
- Rao F., Zhang D., Fang T., et al. Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve Regeneration // Stem Cells Int. 2019. N 2019. P. 2546367. doi: 10.1155/2019/2546367
- Chen J., Ren S., Duscher D., et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function // J Cell Physiol. 2019. Vol. 234, N 12. P. 23097–23110. doi: 10.1002/jcp.28873
- Liu C.Y., Yin G., Sun Y.D., et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury // CNS Neurosci Ther. 2020. Vol. 26, N 2. P. 189–196. doi: 10.1111/cns.13187
- Bucan V., Vaslaitis D., Peck C.T., et al. Effect of Exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury // Mol Neurobiol. 2019. Vol. 56, N 3. P. 1812–1824. doi: 10.1007/s12035-018-1172-z
- Mohammadi R., Sanaei N., Ahsan S., et al. Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats // Int J Surg. 2014. Vol. 12, N 5. P. 33–40. doi: 10.1016/j.ijsu.2013.10.018
- Erba P., Mantovani C., Kalbermatten D.F., et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits // J Plast Reconstr Aesthet Surg. 2010. Vol. 63, N 12. P. e811–e817. doi: 10.1016/j.bjps.2010.08.013
- Liu G., Cheng Y., Guo S., et al. Transplantation of adipose-derived stem cells for peripheral nerve repair // Int J Mol Med. 2011. Vol. 28, N 4. P. 565–572. doi: 10.3892/ijmm.2011.725
- Pappalardo M., Montesano L., Toia F., et al. Immunomodulation in vascularized composite allotransplantation: what is the role for adipose-derived stem cells? // Ann Plast Surg. 2019. Vol. 82, N 2. P. 245–251. doi: 10.1097/SAP.0000000000001763
- Starnoni M., Pappalardo M., Spinella A., et al. Systemic sclerosis cutaneous expression: Management of skin fibrosis and digital ulcers // Ann Med Surg (Lond). 2021. N 71. P. 102984. doi: 10.1016/j.amsu.2021.102984
- Pignatti M., Spinella A., Cocchiara E., et al. Autologous Fat Grafting for the Oral and Digital Complications of Systemic Sclerosis: Results of a Prospective Study // Aesthetic Plast Surg. 2020. Vol. 44, N 5. P. 1820–1832. doi: 10.1007/s00266-020-01848-2
- Scuderi N., Ceccarelli S., Onesti M.G., et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis // Cell Transpl. 2013. Vol. 22, N 5. P. 779–795. doi: 10.3727/096368912X639017
- Bene M.D., Pozzi M.R., Rovati L., et al. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis // Handchir Mikrochir Plast Chir. 2014. Vol. 46, N 4. P. 242–247. doi: 10.1055/s-0034-1376970
- Granel B., Daumas A., Jouve E., et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial // Ann Rheum Dis. 2015. Vol. 74, N 12. P. 2175–2182. doi: 10.1136/annrheumdis-2014-205681
- Bank J., Fuller S.M., Henry G.I., Zachary L.S. Fat grafting to the hand in patients with Raynaud phenomenon: a novel therapeutic modality // Plast Reconstr Surg. 2014. Vol. 133, N 5. P. 1109–1118. doi: 10.1097/PRS.0000000000000104
- Jiang J., Xing F., Luo R., Liu M. Effectiveness of Platelet-Rich Plasma for Patients With Carpal Tunnel Syndrome: A Systematic Review and Meta-Analysis of Current Evidence in Randomized Controlled Trials // Front Pharmacol. 2022. N 13. P. 834213. doi: 10.3389/fphar.2022.834213.
Дополнительные файлы
