Возможности регенеративной медицины и ортобиологических препаратов в лечении заболеваний верхней конечности: обзор литературы

Обложка

Цитировать

Полный текст

Аннотация

Развитие регенеративной медицины, изучение биологии стволовых клеток и анализ механизмов действия факторов роста, содержащихся в плазме, обогащённой тромбоцитами, подтолкнули большое число исследователей к использованию ортобиологических препаратов в своей клинической практике. Целью настоящей работы было представить эффективность использования регенеративных методик и ортобиологических препаратов в лечении заболеваний верхней конечности. При подготовке обзора использована открытая электронная база данных научной литературы PubMed (MEDLINE). Поиск данных литературы произведён по следующим ключевым словам: «регенеративная медицина», «ортобиология», «кисть», «лучезапястный сустав», «плазма, обогащённая тромбоцитами», «мезенхимальные стволовые клетки», «стромально-васкулярная фракция». В статье представлены результаты использования и обоснование применения ортобиологических препаратов в лечении различных патологий кисти и верхней конечности. Применение ортобиологических препаратов и регенеративных методик в лечении заболеваний верхней конечности является безопасным и перспективным направлением. Для последующего эффективного применения клеточных продуктов необходимы проведение дальнейших исследований для оценки их долгосрочных результатов, а также разработка унифицированных протоколов их использования.

Об авторах

Анастасия Игоревна Гребень

Российский национальный исследовательский медицинский университет им. Н.И. Пирогова; НМИЦ реабилитации и курортологии

Email: aik-nastya@mail.ru
ORCID iD: 0000-0002-2423-523X
SPIN-код: 5506-1002

младший научный сотрудник, ординатор

Россия, 117997, Россия, Москва, ул. Островитянова, 1; 121099 Москва, ул Новый Арбат, д. 32

Петр Серафимович Еремин

Городская клиническая больница № 29 имени Н.Э. Баумана

Email: ereminps@gmail.com
ORCID iD: 0000-0001-8832-8470
SPIN-код: 8597-6596

научный сотрудник

Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4

Юлия Вдадимировна Бялик

Городская клиническая больница № 29 имени Н.Э. Баумана

Email: yulyabyalik@ya.ru
ORCID iD: 0009-0001-0601-9066

врач травматолог-ортопед

Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4

Елена Юрьевна Костромина

Городская клиническая больница № 29 имени Н.Э. Баумана

Email: bioimed07@hotmail.com
ORCID iD: 0000-0002-9728-7938
SPIN-код: 5698-7489

кандидат биологических наук, старший научный сотрудник

Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4

Гайк Каренович Парсаданян

Городская клиническая больница № 29 им. Н.Э. Баумана

Email: gaikparsadanyan@yandex.ru
ORCID iD: 0009-0008-7877-8951

врач травматолог-ортопед

Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4

Павел Александрович Марков

Городская клиническая больница № 29 имени Н.Э. Баумана

Email: p.a.markov@mail.ru
ORCID iD: 0000-0002-4803-4803
SPIN-код: 7493-5203

кандидат биологических наук, старший научный сотрудник

Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4

Алексей Валерьевич Афанасьев

Городская клиническая больница № 29 имени Н.Э. Баумана

Email: afaled13@mail.ru
ORCID iD: 0009-0000-8645-6292

кандидат медицинских наук, врач травматолог-ортопед

Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4

Татьяна Николаевна Гребень

Городская клиническая больница № 29 имени Н.Э. Баумана

Автор, ответственный за переписку.
Email: greben72@inbox.ru
ORCID iD: 0000-0002-6001-0804

главный врач

Россия, 111020 Москва, Госпитальная площадь, 2, корп. 4

Список литературы

  1. Coombes B.K., Bisset L., Vicenzino B. Efficacy and safety of corticosteroid injections and other injections for management of tendinopathy: a systematic review of randomised controlled trials // Lancet. 2010. Vol. 376, N 9754. P. 1751–1767. doi: 10.1016/S0140-6736(10)61160-9
  2. Khanna A., Friel M., Gougoulias N., et al. Prevention of adhesions in surgery of the flexor tendons of the hand: what is the evidence? // Br Med Bull. 2009. N 90. P. 85–109. doi: 10.1093/bmb/ldp013
  3. Piazzini D.B., Aprile I., Ferrara P.E., et al. A systematic review of conservative treatment of carpal tunnel syndrome // Clin Rehabil. 2016. Vol. 21, N 4. P. 299–314. doi: 10.1177/0269215507077294
  4. Tsuji W., Rubin J.P., Marra K.G. Adipose-derived stem cells: Implications in tissue regeneration // World J Stem Cells. 2014. Vol. 6, N 3. P. 312–321. doi: 10.4252/wjsc.v6.i3.312
  5. Ramesh R., Jeyaraman M., Prajwal G.S. The prospective study on efficacy and functional outcome of autologous platelet rich plasma injection in musculoskeletal disorders // EC Orthopaedics. 2018. Vol. 9, N 12. P. 849e863.
  6. Yeh K.T., Wu W.T., Wang J.H., Shih J.T. Arthroscopic foveal repair with suture anchors for traumatic tears of the triangular fibrocartilage complex // BMC Musculoskelet Disord. 2022. Vol. 23, N 1. P. 634. doi: 10.1186/s12891-022-05588-z
  7. Karim K.E., Wu C.M., Giladi A.M., Murphy M.S. Orthobiologics in Hand Surgery // J Hand Surg Am. 2021. Vol. 46, N 5. P. 409–415. doi: 10.1016/j.jhsa.2021.01.006
  8. Oh J.K., Messing S., Hyrien O., Hammert W.C. Effectiveness of Corticosteroid Injections for Treatment of de Quervain’s Tenosynovitis // Hand (N Y). 2017. Vol. 12, N 4. P. 357–361. doi: 10.1177/1558944716681976
  9. Ippolito J.A., Hauser S., Patel J., et al. Nonsurgical Treatment of De Quervain Tenosynovitis: A Prospective Randomized Trial // Hand (N Y). 2020. Vol. 15, N 2. P. 215–219. doi: 10.1177/1558944718791187
  10. Zhang J., Nie D., Williamson K., et al. Selectively activated PRP exerts differential effects on tendon stem/progenitor cells and tendon healing // J Tissue Eng. 2019. N 10. P. 2041731418820034. doi: 10.1177/2041731418820034
  11. Everts P., Onishi K., Jayaram P., et al. Platelet-Rich Plasma: New Performance Understandings and Therapeutic Considerations in 2020 // Int J Mol Sci. 2020. Vol. 21, N 20. P. 7794. doi: 10.3390/ijms21207794
  12. Peck E., Ely E. Successful treatment of de Quervain tenosynovitis with ultrasound-guided percutaneous needle tenotomy and platelet trich plasma injection: a case presentation // PM R. 2013. Vol. 5, N 5. P. 438–441. doi: 10.1016/j.pmrj.2013.02.006
  13. Leppanen O.V., Karjalainen T., Goransson H., et al. Outcomes after flexor tendon repair combined with the application of human amniotic membrane allograft // J Hand Surg Am. 2017. Vol. 42, N 6. P. 474.e1–474.e8. doi: 10.1016/j.jhsa.2017.03.006
  14. Golash A., Kay A., Warner J.G., et al. Efficacy of ADCON-T/N after primary flexor tendon repair in Zone II: a controlled clinical trial // J Hand Surg Br. 2003. Vol. 28, N 2. P. 113–115. doi: 10.1016/s0266-7681(02)00249-8
  15. Lee Y.J., Ryoo H.J., Shim H.S. Prevention of postoperative adhesions after flexor tendon repair with acellular dermal matrix in Zones III, IV, and V of the hand: A randomized controlled (CONSORT-compliant) trial // Medicine (Baltimore). 2022. Vol. 101, N 3. P. e28630. doi: 10.1097/MD.0000000000028630
  16. Shim H.S., Park K.S., Kim S.W. Preventing postoperative adhesions after hand tendon repair using acellular dermal matrix // J Wound Care. 2021. Vol. 30, N 11. P. 890–895. doi: 10.12968/jowc.2021.30.11.890
  17. Liu C., Bai J., Yu K., et al. Biological Amnion Prevents Flexor Tendon Adhesion in Zone II: A Controlled, Multicentre Clinical Trial // Biomed Res Int. 2019. N 2019. P. 2354325. doi: 10.1155/2019/2354325
  18. Tarpada S.P., Morris M.T., Lian J., Rashidi S. Current advances in the treatment of medial and lateral epicondylitis // J Orthop. 2018. Vol. 15, N 1. P. 107–110. doi: 10.1016/j.jor.2018.01.040
  19. Via A.G., Frizziero A., Oliva F. Biological properties of mesenchymal Stem Cells from different sources // Muscles Ligaments Tendons J. 2012. Vol. 2, N 3. P. 154–162.
  20. Halpern B.C., Chaudhury S., Rodeo S.A. The role of platelet-Rich plasma in inducing musculoskeletal tissue healing // HSS J. 2012. Vol. 8, N 2. P. 137–145. doi: 10.1007/s11420-011-9239-7
  21. Arora K.K., Kapila R., Kapila S., et al. Management of Lateral Epicondylitis: A Prospective Comparative Study Comparing the Local Infiltrations of Leucocyte Enriched Platelet-Rich Plasma (L-aPRP), Glucocorticoid and Normal Saline // Malays Orthop J. 2022. Vol. 16, N 1. P. 58–69. doi: 10.5704/MOJ.2203.009
  22. Singh A., Gangwar D.S., Singh S. Bone marrow injection: a novel treatment for tennis elbow // J Nat Sci Biol Med. 2014. Vol. 5, N 2. P. 389–391. doi: 10.4103/0976-9668.136198
  23. Connell D., Datir A., Alyas F., Curtis M. Treatment of lateral epicondylitis using skin-derived tenocyte-like cells // Br J Sports Med. 2009. Vol. 43, N 4. P. 293–298. doi: 10.1136/bjsm.2008.056457
  24. Wang A., Mackie K., Breidahl W., et al. Evidence for the durability of autologous tenocyte injection for treatment of chronic resistant lateral epicondylitis: mean 4.5-Year clinical follow-up // Am J Sports Med. 2015. Vol. 43, N 7. P. 1775–1783. doi: 10.1177/0363546515579185
  25. Lee S.Y., Kim W., Lim C., Chung S.G. Treatment of lateral epicondylosis by using allogeneic adipose-derived mesenchymal stem cells: a pilot study // Stem Cells. 2015. Vol. 33, N 10. P. 2995–3005. doi: 10.1002/stem.2110
  26. Khoury M., Tabben M., Rolón A.U., et al. Promising improvement of chronic lateral elbow tendinopathy by using adipose derived mesenchymal stromal cells: a pilot study // J Exp Orthop. 2021. Vol. 8, N 1. P. 6. doi: 10.1186/s40634-020-00320-z
  27. Dolmans G.H., Werker P.M., Hennies H.C., et al. Wnt signaling and Dupuytren’s disease // N Engl J Med. 2011. Vol. 365, N 4. P. 307–317. doi: 10.1056/NEJMoa1101029
  28. Coleman S.R. Structural fat grafting: More than a permanent filler // Plast Reconstr Surg. 2006. Vol. 118, N 3, Suppl. P. 108S–120S. doi: 10.1097/01.prs.0000234610.81672.e7
  29. Hovius S.E.R., Kan H.J., Smit X., et al. Extensive percutaneous aponeurotomy and lipografting: a new treatment for Dupuytren disease // Plast Reconstr Surg. 2011. Vol. 128, N 1. P. 221–228. doi: 10.1097/PRS.0b013e31821741a
  30. Degreef I. Therapy-Resisting Dupuytren’s Disease: New Perspectives in Adjuvant Treatment (doctoral thesis). Leuven, Belgium: Catholic University Leuven, 2009.
  31. Elksniņš-Finogejevs A., Vidal L., Peredistijs A. Intra-articular platelet-rich plasma vs corticosteroids in the treatment of moderate knee osteoarthritis: a single-center prospective randomized controlled study with a 1-year follow up // J Orthop Surg Res. 2020. Vol. 15, N 1. P. 257. doi: 10.1186/s13018-020-01753-z
  32. Ahmad H.S., Farrag S.E., Okasha A.E., et al. Clinical outcomes are associated with changes in ultrasonographic structural appearance after platelet-rich plasma treatment for knee osteoarthritis // Int J Rheum Dis. 2018. Vol. 21, N 5. P. 960–966. doi: 10.1111/1756-185X.13315
  33. Matas J., Orrego M., Amenabar D., et al. Umbilical Cord-Derived Mesenchymal Stromal Cells (MSCs) for Knee Osteoarthritis: Repeated MSC Dosing Is Superior to a Single MSC Dose and to Hyaluronic Acid in a Controlled Randomized Phase I/II Trial // Stem Cells Transl Med. 2019. Vol. 8, N 3. P. 215–224. doi: 10.1002/sctm.18-0053
  34. Xia T., Yu F., Zhang K., et al. The effectiveness of allogeneic mesenchymal stem cells therapy for knee osteoarthritis in pigs // Ann Transl Med. 2018. Vol. 6, N 20. P. 404. doi: 10.21037/atm.2018.09.55
  35. Dolanmaz D., Saglam M., Inan O., et al. Monitoring Bone Morphogenetic Protein-2 and -7, Soluble Receptor Activator of Nuclear Factor-Κb Ligand and Osteoprotegerin Levels in the Peri-Implant Sulcular Fluid during the Osseointegration of Hydrophilic-Modified Sandblasted Acid-Etched and Sandblaste // J Periodont Res. 2015. Vol. 50, N 1. P. 62–73. doi: 10.1111/jre.12182
  36. Loibl M., Lang S., Dendl L.M., et al. Leukocyte-reduced platelet-rich plasma treatment of basal thumb arthritis: a pilot study // Biomed Res Int. 2016. N 2016. P. 9262909. doi: 10.1155/2016/9262909
  37. Malahias M.A., Roumeliotis L., Nikolaou V.S., et al. Platelet-rich plasma versus corticosteroid intraarticular injections for the treatment of trapeziometacarpal arthritis: a prospective randomized controlled clinical trial // Cartilage. 2021. Vol. 12, N 1. P. 51–61. doi: 10.1177/1947603518805230
  38. Medina-Porqueres I., Martin-Garcia P., Sanz-De Diego S., et al. Platelet-rich plasma for thumb carpometacarpal joint osteoarthritis in a professional pianist: case-based review // Rheumatol Int. 2019. Vol. 39, N 12. P. 2167–2175. doi: 10.1007/s00296-019-04454-x
  39. Haas E.M., Eisele A., Arnoldi A., et al. One-year outcomes of intraarticular fat transplantation for thumb carpometacarpal joint osteoarthritis: case review of 99 joints // Plast Reconstr Surg. 2020. Vol. 145, N 1. P. 151–159. doi: 10.1097/PRS.0000000000006378
  40. Herold C., Rennekampff H.O., Groddeck R., Allert S. Autologous Fat Transfer for Thumb Carpometacarpal Joint Osteoarthritis: A Prospective Study // Plast Reconstr Surg. 2017. Vol. 140, N 2. P. 327–335. doi: 10.1097/PRS.0000000000003510
  41. Froschauer S.M., Holzbauer M., Wenny R., et al. Autologous Fat Transplantation for Thumb Carpometacarpal Joint Osteoarthritis (Liparthroplasty): A Case Series with Two Years of Follow-UP // J Clin Med. 2020. Vol. 10, N 1. P. 113. doi: 10.3390/jcm10010113
  42. Bohr S., Rennekampff H.O., Pallua N. Cell-enriched lipoaspirate arthroplasty: a novel approach to first carpometacarpal joint arthritis // Hand Surg. 2015. Vol. 20, N 3. P. 479–481. doi: 10.1142/S0218810415720259
  43. Mayoly A., Witters M., Jouve E., et al. Intra Articular Injection of Autologous Microfat and Platelets-Rich Plasma in the Treatment of Wrist Osteoarthritis: A Pilot Study // J Clin Med. 2022. Vol. 11, N 19. P. 5786. doi: 10.3390/jcm11195786
  44. Cecchi S., Bennet S.J., Arora M. Bone Morphogenetic Protein-7: Review of Signalling and Efficacy in Fracture Healing // J Orthop Translat. 2016. N 4. P. 28–34. doi: 10.1016/j.jot.2015.08.001
  45. Bilic R., Simic P., Jelic M., et al. Osteogenic protein-1 (BMP-7) accelerates healing of scaphoid non-union with proximal pole sclerosis // Int Orthop. 2006. Vol. 30, N 2. P. 128–134. doi: 10.1007/s00264-005-0045-z
  46. Jones N.F., Brown E.E., Mostofi A., et al. Healing of a scaphoid nonunion using human bone morphogenetic protein // J Hand Surg Am. 2005. Vol. 30, N 3. P. 528–533. doi: 10.1016/j.jhsa.2004.12.005
  47. Ablove R.H., Abrams S.S. The use of BMP-2 and screw exchange in the treatment of scaphoid fracture non-union // Hand Surg. 2015. Vol. 20, N 1. P. 167–171. doi: 10.1142/S0218810415970023
  48. Jones N.F., Brown E.E., Vogelin E., Urist M.R. Bone morphogenetic protein as an adjuvant in the treatment of Kienbock’s disease by vascular pedicle implantation // J Hand Surg Eur. 2008. Vol. 33, N 3, P. 317–321. doi: 10.1177/1753193408090394
  49. Rajfer R.A., Danoff J.R., Metzl J.A., Rosenwasser M.P. A novel arthroscopic technique utilizing bone morphogenetic protein in the treatment of Kienbock disease // Tech Hand Up Extrem Surg. 2013. Vol. 17, N 1. P. 2–6. doi: 10.1097/BTH.0b013e3182712ba0
  50. Chen X., Jones I.A., Park C., Vangsness C.T. The efficacy of platelet-rich plasma on tendon and ligament healing: a systematic review and meta-analysis with bias assessment // Am J Sports Med. 2018. Vol. 46, N 8. P. 2020–2032. doi: 10.1177/0363546517743746
  51. Haunschild E.D., Huddleston H.P., Chahla J., et al. Platelet-rich plasma augmentation in meniscal repair surgery: a systematic review of comparative studies // Arthroscopy. 2020. Vol. 36, N 6. P. 1765–1774. doi: 10.1016/j.arthro.2020.01.038
  52. Belk J.W., Kraeutler M.J., Thon S.G., et al. Augmentation of meniscal repair with platelet-rich plasma: a systematic review of comparative studies // Orthop J Sports Med. 2020. Vol. 8, N 6. P. 2325967120926145. doi: 10.1177/2325967120926145
  53. Sochacki K.R., Safran M.R., Abrams G.D., et al. Platelet-rich plasma augmentation for isolated arthroscopic meniscal repairs leads to significantly lower failure rates: a systematic review of comparative studies // Orthop J Sports Med. 2020. Vol. 8, N 11. P. 2325967120964534. doi: 10.1177/2325967120964534
  54. Stachura A., Paskal W., Pawlik W., et al. The Use of Adipose-Derived Stem Cells (ADSCs) and Stromal Vascular Fraction (SVF) in Skin Scar Treatment-A Systematic Review of Clinical Studies // J Clin Med. 2021. Vol. 10, N 16. P. 3637. doi: 10.3390/jcm10163637
  55. Carstens M.H., Correa D., Llull R., et al. Subcutaneous reconstruction of hand dorsum and fingers for late sequelae of burn scars using adipose-derived stromal vascular fraction (SVF) // CellR4. 2015. Vol. 3, N 5. P. e1675.
  56. Carstens M.H., Pérez M., Briceño H., et al. Treatment of late sequelae of burn scar fibrosis with adi-pose-derived stromal vascular fraction (SVF) cells: A case series // CellR4. 2017. Vol. 5, N 3. P. e2404.
  57. Azzena B., Mazzoleni F., Abatangelo G., et al. Autologous platelet-rich plasma as an adipocyte in vivo delivery system: case report // Aesthet Plast Surg. 2008. Vol. 32, N 1. P. 155–158. Discussion 159–161. doi: 10.1007/s00266-007-9022-9
  58. To K., Crowley C., Lim S.-K., Khan W.S. Autologous adipose tissue grafting for the management of the painful scar // Cytotherapy. 2019. Vol. 21, N 11. P. 1151–1160. doi: 10.1016/j.jcyt.2019.08.005
  59. Krastev T.K., Schop S.J., Hommes J., et al. Autologous fat transfer to treat fibrosis and scar-related conditions: A systematic review and meta-analysis // J Plast Reconstr Aesthetic Surg. 2020. Vol. 73, N 11. P. 2033–2048. doi: 10.1016/j.bjps.2020.08.023
  60. Lee J.W., Park S.H., Lee S.J., et al. Clinical Impact of Highly Condensed Stromal Vascular Fraction Injection in Surgical Management of Depressed and Contracted Scars // Aesthetic Plast Surg. 2018. Vol. 42, N 6. P. 1689–1698. doi: 10.1007/s00266-018-1216-9
  61. Jan S.N., Bashir M.M., Khan F.A., et al. Unfiltered Nanofat Injections Rejuvenate Postburn Scars of Face // Ann Plast Surg. 2019. Vol. 82, N 1. P. 28–33. doi: 10.1097/SAP.0000000000001631
  62. Gümbel D., Ackerl M., Napp M., et al. Retrospective analysis of 56 soft tissue defects treated with one-stage reconstruction using dermal skin substitutes // J Dtsch Dermatol Ges. 2016. Vol. 14, N 6. P. 595–601. doi: 10.1111/ddg.12874
  63. Liu Q., Zhang N., Li Z., He H. Efficacy of autologous platelet-rich plasma gel in the treatment of refractory pressure injuries and its effect on wound healing time and patient quality of life // Clinics (Sao Paolo). 2021. N 76. P. e2355. doi: 10.6061/clinics/2021/e2355
  64. O’Connell B., Wragg N.M., Wilson S.L. The use of PRP injections in the management of knee osteoarthritis // Cell Tissue Res. 2019. Vol. 376, N 2. P. 143–152. doi: 10.1007/s00441-019-02996-x
  65. Deng Z., Long Z.S., Gong F.P., Chen G. The efficacy and safety of platelet-rich plasma in the tendon-exposed wounds: a preliminary study // J Orthop Surg Res. 2022. Vol. 17, N 1. P. 497. doi: 10.1186/s13018-022-03401-0
  66. Spartalis E., Tomos P., Konofaos P., et al. The effect of autologous platelet-rich plasma on bronchial stump tissue granulation after pneumonectomy: experimental study // ISRN Surg. 2013. N 2013. P. 864350. doi: 10.1155/2013/864350
  67. Menchisheva Y., Mirzakulova U., Yui R. Use of platelet-rich plasma to facilitate wound healing // Int Wound J. 2019. Vol. 16, N 2. P. 343–353. doi: 10.1111/iwj.13034
  68. Guo S.C., Tao S.C., Yin W.J., et al. Exosomes derived from platelet-rich plasma promote the re-epithelization of chronic cutaneous wounds via activation of YAP in a diabetic rat model // Theranostics. 2017. Vol. 7, N 1. P. 81–96. doi: 10.7150/thno.16803
  69. Dong C., Sun Y., Qi Y., et al. Effect of Platelet-Rich Plasma Injection on Mild or Moderate Carpal Tunnel Syndrome: An Updated Systematic Review and Meta-Analysis of Randomized Controlled Trials // Biomed Res Int. 2020. N 2020. P. 5089378. doi: 10.1155/2020/5089378
  70. Kim H.J., Park S.H. Median nerve injuries caused by carpal tunnel injections // Korean J Pain. 2014. Vol. 27, N 2. P. 112–117. doi: 10.3344/kjp.2014.27.2.112
  71. Ding X.G., Li S.W., Zheng X.M., et al. The effect of platelet-rich plasma on cavernous nerve regeneration in a rat model // Asian J Androl. 2009. Vol. 11, N 2. P. 215–221. doi: 10.1038/aja.2008.37
  72. Cass S.P. Ultrasound-Guided Nerve Hydrodissection: What Is it? A Review of the Literature // Curr Sports Med Rep. 2016. Vol. 15, N 1. P. 20–22. doi: 10.1249/JSR.0000000000000226
  73. Senna M.K., Shaat R.M., Ali A.A.A. Platelet-rich plasma in treatment of patients with idiopathic carpal tunnel syndrome // Clin Rheumatol. 2019. Vol. 38, N 12. P. 3643–3654. doi: 10.1007/s10067-019-04719-7
  74. Malahias M.A., Nikolaou V.S., Johnson E.O., et al. Platelet-rich plasma ultrasound-guided injection in the treatment of carpal tunnel syndrome: a placebo-controlled clinical study // J Tissue Eng Regen Med. 2018. Vol. 12, N 3. P. e1480–e1488. doi: 10.1002/term.2566
  75. Wu Y.T., Ho T.Y., Chou Y.C., et al. Six-month efficacy of platelet-rich plasma for carpal tunnel syndrome: a prospective randomized, single-blind controlled trial // Sci Rep. 2017. Vol. 7, N 1. P. 94. doi: 10.1038/s41598-017-00224-6
  76. Shen Y.P., Li T.Y., Chou Y.C., et al. Comparison of perineural platelet rich plasma and dextrose injections for moderate carpal tunnel syndrome: a prospective randomized, single-blind, head-to-head comparative trial // J Tissue Eng Regen Med. 2019. Vol. 13, N 11. P. 2009–2017. doi: 10.1002/term.2950
  77. Chen S.R., Shen Y.P., Ho T.Y., et al. One-Year Efficacy of Platelet-Rich Plasma for Moderate-to-Severe Carpal Tunnel Syndrome: A Prospective, Randomized, Double-Blind, Controlled Trial // Arch Phys Med Rehabil. 2021. Vol. 102, N 5. P. 951–958. doi: 10.1016/j.apmr.2020.12.025
  78. Trull-Ahuir C., Sala D., Chismol-Abad J., et al. Efficacy of platelet-rich plasma as an adjuvant to surgical carpal ligament release: a prospective, randomized controlled clinical trial // Sci Rep. 2020. Vol. 10, N 1. P. 2085. doi: 10.1038/s41598-020-59113-0
  79. Kuo Y.C., Lee C.C., Hsieh L.F. Ultrasound-guided perineural injection with platelet-rich plasma improved the neurophysiological parameters of carpal tunnel syndrome: a case report // J Clin Neurosci. 2017. N 44. P. 234–236. doi: 10.1016/j.jocn.2017.06.053
  80. Chen L.C., Ho C.W., Sun C.H., et al. Ultrasound-guided pulsed radiofrequency for carpal tunnel syndrome: a single-blinded randomized controlled study // PLoS One. 2015. Vol. 10, N 6. Article e0129918. doi: 10.1371/journal.pone.0129918
  81. Ustün N., Tok F., Yagz A.E., et al. Ultrasound-guided vs. Blind Steroid Injections in Carpal Tunnel Syndrome: A Single-Blind Randomized Prospective Study // Am J Phys Med Rehabil. 2013. Vol. 92, N 11. P. 999–1004. doi: 10.1097/PHM.0b013e31829b4d72
  82. Stokvis A., van der Avoort D.J., van Neck J.W., et al. Surgical management of neuroma pain: a prospective follow-up study // Pain. 2010. Vol. 151, N 3. P. 862–869. doi: 10.1016/j.pain.2010.09.032
  83. Lutz B.S., Ma S.F., Chuang D.C., et al. Interposition of a pedicle fat flap significantly improves specificity of reinnervation and motor recovery after repair of transected nerves in adjacency in rats // Plast Reconstr Surg. 2001. Vol. 107, N 1. P. 116–123. doi: 10.1097/00006534-200101000-00017
  84. Guo J., Nguyen A., Banyard D.A., Fadavi D., et al. Stromal vascular fraction: a regenerative reality? Part 2: mechanisms of regenerative action // J Plast Reconstr Aesthet Surg. 2015. Vol. 69, N 2. P. 180–188. doi: 10.1016/j.bjps.2015.10.014
  85. Zimmermann S., Fakin R.M., Giovanoli P., Calcagni M. Outcome of Stromal Vascular Fraction-Enriched Fat Grafting Compared to Intramuscular Transposition in Painful End-Neuromas of Superficial Radial Nerve: Preliminary Results // Front Surg. 2018. N 5. P. 10. doi: 10.3389/fsurg.2018.00010
  86. Calcagni M., Zimmermann S., Scaglioni M.F., et al. The novel treatment of SVF-enriched fat grafting for painful end-neuromas of superficial radial nerve // Microsurgery. 2018. Vol. 38, N 3. P. 264–269. doi: 10.1002/micr.30122
  87. Yu T., Xu Y., Ahmad M.A., Javed R., et al. Exosomes as a Promising Therapeutic Strategy for Peripheral Nerve Injury // Curr Neuropharmacol. 2021. Vol. 19, N 12. P. 2141–2151. doi: 10.2174/1570159X19666210203161559
  88. Tang B.L. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers // Brain Res Bull. 2018. N 143. P. 123–131. doi: 10.1016/j.brainresbull.2018.10.008
  89. Wieringa P.A., Gonçalves de Pinho A.R., Micera S., et al. Biomimetic architectures for peripheral nerve repair: a review of biofabrication strategies // Adv Healthc Mater. 2018. Vol. 7, N 8. P. e1701164. doi: 10.1002/adhm.201701164
  90. Panayi A.C., Orgill D.P. Current use of biological scaffolds in plastic surgery // Plast Reconstr Surg. 2019. Vol. 143, N 1. P. 209–220. doi: 10.1097/PRS.0000000000005102
  91. Li D., Huang S., Yin Z., et al. Increases in miR-124-3p in microglial exosomes confer neuroprotective effects by targeting FIP200-mediated neuronal autophagy following traumatic brain injury // Neurochem Res. 2019. Vol. 44, N 8. P. 1903–1923. doi: 10.1007/s11064-019-02825-1
  92. Ma Z., Wang Y., Li H. Applications of extracellular vesicles in tissue regeneration // Biomicrofluidics. 2020. Vol. 14, N 1. P. 011501. doi: 10.1063/1.5127077
  93. Rao F., Zhang D., Fang T., et al. Exosomes from human gingiva-derived mesenchymal stem cells combined with biodegradable chitin conduits promote rat sciatic nerve Regeneration // Stem Cells Int. 2019. N 2019. P. 2546367. doi: 10.1155/2019/2546367
  94. Chen J., Ren S., Duscher D., et al. Exosomes from human adipose-derived stem cells promote sciatic nerve regeneration via optimizing Schwann cell function // J Cell Physiol. 2019. Vol. 234, N 12. P. 23097–23110. doi: 10.1002/jcp.28873
  95. Liu C.Y., Yin G., Sun Y.D., et al. Effect of exosomes from adipose-derived stem cells on the apoptosis of Schwann cells in peripheral nerve injury // CNS Neurosci Ther. 2020. Vol. 26, N 2. P. 189–196. doi: 10.1111/cns.13187
  96. Bucan V., Vaslaitis D., Peck C.T., et al. Effect of Exosomes from rat adipose-derived mesenchymal stem cells on neurite outgrowth and sciatic nerve regeneration after crush injury // Mol Neurobiol. 2019. Vol. 56, N 3. P. 1812–1824. doi: 10.1007/s12035-018-1172-z
  97. Mohammadi R., Sanaei N., Ahsan S., et al. Repair of nerve defect with chitosan graft supplemented by uncultured characterized stromal vascular fraction in streptozotocin induced diabetic rats // Int J Surg. 2014. Vol. 12, N 5. P. 33–40. doi: 10.1016/j.ijsu.2013.10.018
  98. Erba P., Mantovani C., Kalbermatten D.F., et al. Regeneration potential and survival of transplanted undifferentiated adipose tissue-derived stem cells in peripheral nerve conduits // J Plast Reconstr Aesthet Surg. 2010. Vol. 63, N 12. P. e811–e817. doi: 10.1016/j.bjps.2010.08.013
  99. Liu G., Cheng Y., Guo S., et al. Transplantation of adipose-derived stem cells for peripheral nerve repair // Int J Mol Med. 2011. Vol. 28, N 4. P. 565–572. doi: 10.3892/ijmm.2011.725
  100. Pappalardo M., Montesano L., Toia F., et al. Immunomodulation in vascularized composite allotransplantation: what is the role for adipose-derived stem cells? // Ann Plast Surg. 2019. Vol. 82, N 2. P. 245–251. doi: 10.1097/SAP.0000000000001763
  101. Starnoni M., Pappalardo M., Spinella A., et al. Systemic sclerosis cutaneous expression: Management of skin fibrosis and digital ulcers // Ann Med Surg (Lond). 2021. N 71. P. 102984. doi: 10.1016/j.amsu.2021.102984
  102. Pignatti M., Spinella A., Cocchiara E., et al. Autologous Fat Grafting for the Oral and Digital Complications of Systemic Sclerosis: Results of a Prospective Study // Aesthetic Plast Surg. 2020. Vol. 44, N 5. P. 1820–1832. doi: 10.1007/s00266-020-01848-2
  103. Scuderi N., Ceccarelli S., Onesti M.G., et al. Human adipose-derived stromal cells for cell-based therapies in the treatment of systemic sclerosis // Cell Transpl. 2013. Vol. 22, N 5. P. 779–795. doi: 10.3727/096368912X639017
  104. Bene M.D., Pozzi M.R., Rovati L., et al. Autologous fat grafting for scleroderma-induced digital ulcers. An effective technique in patients with systemic sclerosis // Handchir Mikrochir Plast Chir. 2014. Vol. 46, N 4. P. 242–247. doi: 10.1055/s-0034-1376970
  105. Granel B., Daumas A., Jouve E., et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial // Ann Rheum Dis. 2015. Vol. 74, N 12. P. 2175–2182. doi: 10.1136/annrheumdis-2014-205681
  106. Bank J., Fuller S.M., Henry G.I., Zachary L.S. Fat grafting to the hand in patients with Raynaud phenomenon: a novel therapeutic modality // Plast Reconstr Surg. 2014. Vol. 133, N 5. P. 1109–1118. doi: 10.1097/PRS.0000000000000104
  107. Jiang J., Xing F., Luo R., Liu M. Effectiveness of Platelet-Rich Plasma for Patients With Carpal Tunnel Syndrome: A Systematic Review and Meta-Analysis of Current Evidence in Randomized Controlled Trials // Front Pharmacol. 2022. N 13. P. 834213. doi: 10.3389/fphar.2022.834213.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Эко-Вектор, 2023



Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».