Potential use of medical thermography in the prevention and diagnosis of perioperative complications in emergency trauma care

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Body temperature is one of the key indicators for diagnosing a variety of surgical and trauma-related conditions. Infrared thermography is one of the most relevant and widely used methods in modern clinical practice. This technique has not yet received general acceptance, and its use is currently underrepresented in the scientific community. The aim of this study was to analyze existing data on the practical significance and role of medical thermography in diagnosing and predicting postoperative complications in trauma patients. An analysis of both Russian and international publications was conducted to explore the potential and future prospects of medical thermography in current trauma practice. In orthopedic and trauma practice, infrared thermography is more commonly used to diagnose chronic musculoskeletal conditions such as scoliosis, osteoporosis, and osteochondrosis. In acute traumatic injuries, it is more commonly used for intraoperative and postoperative monitoring to prevent complications or enable their early detection, as treatment outcomes largely depend on timely and adequate diagnosis and identification of the primary injury. Opinions within the scientific community on the use of medical thermography remain divided. On the one hand, the vast majority of researchers studying the potential of medical thermography consider it a valuable supplement to conventional imaging methods. However, despite its numerous advantages and significant application potential, the technique has yet to be widely adopted. Infrared thermography is a promising diagnostic tool in modern medicine, especially in traumatology. Conducting more studies to explore its capabilities could help raise awareness and promote its integration into trauma care practice.

About the authors

Artem M. Morozov

Tver State Medical University

Author for correspondence.
Email: ammorozovv@gmail.com
ORCID iD: 0000-0003-4213-5379
SPIN-code: 6815-9332

MD, Cand. Sci. (Medicine), Associate Professor

Russian Federation, 4 Sovetksaya st, Tver, 170100

Pavel G. Kogan

Vreden National Medical Center for Traumatology and Orthopedics

Email: pgkogan@rniito.ru
ORCID iD: 0000-0002-7179-4851
SPIN-code: 5532-8870

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Konstantin I. Khorak

Vreden National Medical Center for Traumatology and Orthopedics

Email: kostet0808@mail.ru
ORCID iD: 0000-0003-4043-4164
SPIN-code: 1961-0790

MD

Russian Federation, Saint Petersburg

Maria E. Piskareva

Tver State Medical University

Email: maria-piskareva@mail.ru
ORCID iD: 0000-0002-4329-2539
SPIN-code: 6081-4582
Russian Federation, 4 Sovetksaya st, Tver, 170100

References

  1. Tian Y, Liu GE, Zhao WJ, et al. Review of Chinese Journal of Traumatology in the year 2018. Chin J Traumatol. 2019;22(1):21–23. doi: 10.1016/j.cjtee.2019.01.001
  2. Voronin KA, Malyugina OA, Maslova MYu, Tolemishov RB. Retrospective analysis of trauma and surgical patients with infectious complications. Zametki uchenogo. 2021;(9–1):82–85. (In Russ.). EDN: ALVNRG
  3. Timerbulatov VM, Timerbulatov SV, Timerbulatov MV. Classification of surgical complications. Khirurgiia (Mosk). 2018;(9):62–67. (In Russ.). doi: 10.17116/hirurgia2018090162 EDN: VKFVAF
  4. Vladimirova ES, Tarabrin EA, Popova IE, et al. The influence of traumatic injuries early diagnosis on the development of pulmonary complications in patients with multisystem chest trauma. Neotlozhnaya medicinskaya pomoshch’. Zhurnal im. N.V. Sklifosovskogo. 2021;10(4):702–711. (In Russ.). doi: 10.23934/2223-9022-2021-10-4-702-711 EDN: LWMAMT
  5. Mel’nikov VS, Dubrov VE, Zelyanin AS, et al. Capabilities of dynamic infrared thermography for planning and monitoring of perforating flaps. Travmatologiya i ortopediya Rossii. 2024;30(1):99–109. (In Russ.). doi: 10.17816/2311-2905-17460 EDN: AFMXVI
  6. Derruau S, Renard Y, Pron H, et al. Combining Magnetic Resonance Imaging (MRI) and Medical Infrared Thermography (MIT) in the pre- and perioperating management of severe Hidradenitis Suppurativa (HS). Photodiagnosis Photodyn Ther. 2018;23:9–11. doi: 10.1016/j.pdpdt.2018.05.007
  7. Nazzaro G, Moltrasio C, Marzano AV. Infrared thermography and color Doppler: Two combined tools for assessing inflammation in hidradenitis suppurativa. Skin Res Technol. 2020;26(1):140–141. doi: 10.1111/srt.12750
  8. Djajakusumah TM, Candrawinata VS, Ho JP, et al. The predictive value of infrared thermal imaging (IRT) for peripheral artery disease: A systematic review. Medicine (Baltimore). 2023;102(43):e35639. doi: 10.1097/MD.0000000000035639
  9. Мorozov AM, Zhukov SV, Sorokovikova TV, et al. Medical thermovision: possibilities and prospects of the method. Medicinskij sovet. 2022;16(6):256–263. (In Russ.). doi: 10.21518/2079-701X-2022-16-6-256-263 EDN: QZSAKC
  10. Moran-Romero MA, Mendoza FJL. Postoperative monitoring of free flaps using smartphone thermal imaging may lead to ambiguous results: Three case reports. Int Microsurg J. 2022;6:4. doi: 10.24983/scitemed.imj.2022.00163
  11. Hummelink S, Kruit AS, van Vlaenderen ARW, et al. Post-operative monitoring of free flaps using a low-cost thermal camera: A pilot study. Eur J Plast Surg. 2020;43:589–596. doi: 10.1007/s00238-020-01642-y
  12. Sowa MG, Friesen JR, Levasseur M, et al. The Utility of near Infrared Imaging in Intra-Operative Prediction of Flap Outcome: A Reverse McFarlane Skin Flap Model Study. Journal of Near Infrared Spectroscopy. 2012;20(5):601–615. doi: 10.1255/ jnirs.1007
  13. Velichko MN, Shturmin AV, Terskov AYu, Samojlov AS, Belyakova AM. The use of infrared thermography in rehabilitation after anterior cruciate ligament surgery. Medicinskij alfavit. 2023;(32):50–53. (In Russ.). doi: 10.33667/2078-5631-2023-32-50-53 EDN: OUPUCN
  14. Barbosa JS, Amorim A, Arruda M, et al. Infrared thermography assessment of patients with temporomandibular disorders. Dentomaxillofac Radiol. 2020;49(4):20190392. doi: 10.1259/dmfr.20190392
  15. Damião CP, Montero JRG, Moran MBH, et al. Application of thermography in the diagnostic investigation of thyroid nodules. Endocr J. 2021;68(5):573–581. doi: 10.1507/endocrj.EJ20-0541
  16. Ilo A, Romsi P, Mäkelä J. Infrared Thermography and Vascular Disorders in Diabetic Feet. J Diabetes Sci Technol. 2020;14(1):28–36. doi: 10.1177/1932296819871270
  17. Nergård S, Mercer JB, de Weerd L. Impact on Abdominal Skin Perfusion following Abdominoplasty. Plast Reconstr Surg Glob Open. 2021;9(1):e3343. doi: 10.1097/GOX.0000000000003343
  18. Tattersall GJ. Infrared thermography: A non-invasive window into thermal physiology. Comp Biochem Physiol A Mol Integr Physiol. 2016 ;202:78–98. doi: 10.1016/j.cbpa.2016.02.022
  19. Mazeika E, Jariene V, Valiukeviciene S. Medical infrared thermography as hidradenitis suppurativa diagnostic tool: literature review. Postepy Dermatol Alergol. 2021;38(2):32–35. doi: 10.5114/ada.2021.104274
  20. Datsenko AV, Kazmin VI. Use of a remote infrared thermography in experimental medicine at extreme influences. Saratov Journal of Medical Scientific Research. 2016;12(4):685–691. (In Russ.). EDN: YPYFLP
  21. Kozhevnikova IS, Pankov MN, Gribanov AV, Startseva LF, Ermoshina NA. The use of infrared thermography in modern medicine (literature review). Human Ecology. 2017;24(2):39–46. (In Russ.). doi: 10.33396/1728-0869-2017-2-39-46 EDN: LYIZMT
  22. Novikov AYu, Novikov YuO. The Use Of Medical Infrared Thermography In Musculo-Skeletal Pain. Medicinskij vestnik Bashkortostana. 2019;14(4):100–103. (In Russ.). EDN: BVJAQJ
  23. Cruz-Segura A, Cruz-Domínguez MP, Jara LJ, et al. Early Detection of Vascular Obstruction in Microvascular Flaps Using a Thermographic Camera. J Reconstr Microsurg. 2019;35(7):541–548. doi: 10.1055/s-0039-1688749
  24. Chava SK, Agrawal M, Vidya K, et al. Role of Infrared Thermography in Planning and Monitoring of Head and Neck Microvascular Flap Reconstruction. Plast Reconstr Surg Glob Open. 2023;11(9):e5158. doi: 10.1097/ GOX.0000000000005158
  25. Yarullina IH, Sadykova GA. Radiological research methods for musculoskeletal pain. Medicinskij vestnik Bashkortostana. 2021;16(2):79–83. (In Russ.). EDN: ONSRTE
  26. Yarovenko GV. Diagnostic possibilities of thermal vision study of trophic ulcers. Regionarnoe krovoobrashchenie i mikrocirkulyaciya. 2020;19(2):38–42. (In Russ.). doi: 10.24884/1682-6655-2020-19-2-38-42
  27. Saygin D, Highland KB, Tonelli AR. Microvascular involvement in systemic sclerosis and systemic lupus erythematosus. Microcirculation. 2019;26(3):e12440. doi: 10.1111/micc.12440
  28. Asif A, Poyiatzis C, Raheman FJ, Rojoa DM. The use of infrared thermography (IRT) in burns depth assessment: A diagnostic accuracy meta-analysis. Eur Burn J. 2022;3:432–446. doi: 10.3390/ebj3030038
  29. Rabbani MJ, Bhatti AZ, Shahzad A. Flap Monitoring using Thermal Imaging Camera: A Contactless Method. J Coll Physicians Surg Pak. 2021;31(6):703–706. doi: 10.29271/jcpsp.2021.06.703
  30. Sergeev AN, Morozov AM, Charyev YuO, Belyak MA. On the possibility of using medical thermography in clinical practice. Profilakticheskaya medicina. 2022;25(4):82–88. (In Russ.). doi: 10.17116/profmed20222504182 EDN: ENVGDT
  31. Sergeev A, Morozov A, Mokhov N, Sergeev N. The use of thermography for diagnosis of acute appendicitis. Archiv EuroMedica. 2019;9(3):53–54. doi: 10.35630/2199885X/2019/9/3.16
  32. Kow J, Tan YK. An update on thermal imaging in rheumatoid arthritis. Joint Bone Spine. 2023;90(3):105496. doi: 10.1016/j.jbspin.2022.105496
  33. Kesztyüs D, Brucher S, Wilson C, Kesztyüs T. Use of Infrared Thermography in Medical Diagnosis, Screening, and Disease Monitoring: A Scoping Review. Medicina. 2023;59(12):2139. doi: 10.3390/medicina59122139
  34. Cwajda-Białasik J, Mościcka P, Jawień A, Szewczyk MT. Infrared thermography to prognose the venous leg ulcer healing process-preliminary results of a 12-week, prospective observational study. Wound Repair Regen. 2020;28(2):224–233. doi: 10.1111/wrr.12781
  35. Lahiri BB, Bagavathiappan S, Jayakumar T, Philip J. Medical applications of infrared thermography: A review. Infrared Phys Technol. 2012;55(4):221–235. doi: 10.1016/j.infrared.2012.03.007
  36. Dolgov IM, Volovik MG, Zheleznyak IS, et al. Possibilities of medical thermal imaging in the organization of primary health care. Medicinskij alfavit. 2023;(7):42–50. (In Russ.). doi: 10.33667/2078-5631-2023-7-42-50 EDN: ILOQWI
  37. Kim H, Kwak SH, Byeon JY, et al. An Experimental and Clinical Study of Flap Monitoring with an Analysis of the Clinical Course of the Flap Using an Infrared Thermal Camera. Bioengineering. 2024;11(7):688. doi: 10.3390/bioengineering11070688
  38. Roustit M, Cracowski JL. Non-invasive assessment of skin microvascular function in humans: an insight into methods. Microcirculation. 2012;19(1):47–64. doi: 10.1111/j.15498719.2011.00129.x
  39. Morozov AM, Mohov EM, Kadykov VA, Panova AV. Medical thermography: capabilities and perspectives. Kazanskij medicinskij zhurnal. 2018;99(2):264–270. (In Russ.). doi: 10.17816/KMJ2018-264
  40. Vinderlih ME, Shchekolova NB. Use of thermal imager in complex diagnosis and treatment of musculoskeletal system diseases: literature review. Permskij medicinskij zhurnal. 2020;37(4):54–61. (In Russ.). doi: 10.17816/pmj37454-61 EDN: XXWEYW
  41. Volovik MG, Dolgov IM. Thermotopography of the hands of a healthy person as a basis for thermal diagnosis (narrative review). Medicinskij alfavit. 2020;(32):62–68. (In Russ.). doi: 10.33667/2078-5631-2020-32-62-68 EDN: DRBQJS
  42. Volovik MG, Dolgov IM. Thermosemiotics of the hands. Report 2. Thermal patterns of the hands in patients with upper limbs vascular disorders, Raynaud’s phenomenon, after thoracic sympathectomy, in ischemic heart disease and a number of other diseases. Medicinskij alfavit. 2021;(5):62–70. (In Russ.). doi: 10.33667/2078-5631-2021-5-62-70 EDN: SWFUSZ
  43. Petrova NL, Whittam A, Macdonald A, et al. Reliability of a novel thermal imaging system for temperature assessment of healthy feet. J Foot Ankle Res. 2018;11:1–6.
  44. Astasio-Picado A, Martínez EE, Nova AM, Rodríguez RS, Gómez-Martín B. Thermal map of the diabetic foot using infrared thermography. Infrared Phys Technol. 2018;93:59–62. doi: 10.1016/j.enfcli.2018.11.002
  45. Vardasca R, Ring E, Plassmann P, Jones CD. Thermal symmetry of the upper and lower extremities in healthy subjects. Thermol Inter. 2012;22(2):53–60.
  46. Hizhnyak EP, Hizhnyak LN, Maevskij EI. Early recognition of allergic reactions using high resolution digital infrared thermography. Vestnik novyh medicinskih tekhnologij. 2019;26(4):152–156. (In Russ.). doi: 10.24411/1609-2163-2019-16589 EDN: WWSIZT
  47. der Strasse WA, Campos DP, Mendonça CJA, et al. Detecting bone lesions in the emergency room with medical infrared thermography. BioMed Eng OnLine. 2022;21:35. doi: 10.1186/s12938-022-01005-7
  48. Haluzan D, Davila S, Antabak A, et al. Thermal changes during healing of distal radius fractures — Preliminary findings. Injury. 2015;46:S103–S106. doi: 10.1016/j.injury.2015.10.046
  49. Corte ACR, Hernandez AJ. Application of medical infrared thermography to sports medicine. Rev Bras Med Esporte. 2016;22:315–319. doi: 10.1590/1517-869220162204160783
  50. Morozov AM, Sergeev AN, Armasov AR, et al. Temperature circulation index as an indicator of the state of the woundary process. Sovremennye problemy nauki I obrazovaniya. 2021;(1):41. (In Russ.). doi: 10.17513/spno.30496 EDN: FNYAIM
  51. Silva CT, Naveed N, Bokhari S, et al. Early assessment of the efficacy of digital infrared thermal imaging in pediatric extremity trauma. Emerg Radiol. 2012;19(3):203–209. doi: 10.1007/s10140-012-1027-2
  52. Mambou SJ, Maresova P, Krejcar O, Selamat A, Kuca K. Breast Cancer Detection Using Infrared Thermal Imaging and a Deep Learning Model. Sensors (Basel). 2018;18(9):2799. doi: 10.3390/s18092799
  53. Khizhnyak EP, Khizhnyak LN, Maevsky EI, Smurov SV. Possibilities of detection of the patients using a thermography. Challenges and prospects. Journal of New Medical Technologies. 2020;27(4):110–114. (In Russ.). doi: 10.24411/1609-2163-2020-16775 EDN: KGMWRV
  54. Sessler DI. Perioperative Temperature Monitoring. Anesthesiology. 2021;134(1):111118. doi: 10.1097/ALN.0000000000003481
  55. Freundlich RE, Nelson SE, Qiu Y, et al. A retrospective evaluation of the risk of bias in perioperative temperature metrics. J Clin Monit Comput. 2019;33(5):911–916. doi: 10.1007/s10877-018-0233-1
  56. Munday J, Delaforce A, Heidke P, et al. Perioperative temperature monitoring for patient safety: A period prevalence study of five hospitals. Int J Nurs Stud. 2023;143:104508. doi: 10.1016/j.ijnurstu.2023.104508
  57. Margraf A, Ludwig N, Zarbock A, Rossaint J. Systemic Inflammatory Response Syndrome After Surgery: Mechanisms and Protection. Anesth Analg. 2020;131(6):1693–1707. doi: 10.1213/ANE.0000000000005175
  58. Leijte GP, Custers H, Gerretsen J, et al. Increased plasma levels of danger-associated molecular patterns are associated with immune suppression and postoperative infections in patients undergoing cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Front Immunol. 2018;9:663. doi: 10.3389/fimmu.2018.00663
  59. Kumar P, Gaurav A, Rajnish RK, et al. Applications of thermal imaging with infrared thermography in Orthopaedics. J Clin Orthop Trauma. 2021;24:101722. doi: 10.1016/j.jcot.2021.101722
  60. Polidori G, Renard Y, Lorimier S, et al. Medical Infrared Thermography assistance in the surgical treatment of axillary Hidradenitis Suppurativa: A case report. Int J Surg Case Rep. 2017;34:56–59. doi: 10.1016/j.ijscr.2017.03.015
  61. Chava SK, Agrawal M, Vidya K, et al. Role of Infrared Thermography in Planning and Monitoring of Head and Neck Microvascular Flap Reconstruction. Plast Reconstr Surg Glob Open. 2023;11(9):e5158. doi: 10.1097/GOX.0000000000005158
  62. Hazratkulov RB. Postoperative complications in patients with severe traumatic brain injury. Bulletin of Pirogov National Medical & Surgical Center. 2019;14(3):32–33. doi: 10.25881/BPNMSC.2019.17.23.005
  63. Oehme F, Rühle A, Börnert K, et al. Simple Wound Irrigation in the Postoperative Treatment for Surgically Drained Spontaneous Soft Tissue Abscesses: A Prospective, Randomized Controlled Trial. World J Surg. 2020;44(12):4041–4051. doi: 10.1007/s00268-020-05738-1
  64. Rühle A, Oehme F, Metzger J, et al. International survey evaluating treatment of primary superficial skin abscesses. Eur J Trauma Emerg Surg. 2021;47(4):1049–1056. doi: 10.1007/s00068-019-01279-y.
  65. Zabaglo M, Leslie SW, Sharman T. Postoperative Wound Infections. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025.
  66. Ammoush M, Gzawi M, Warawreh A, Hijazin R, Jafar H. Clinical evaluation of thermography as a diagnostic tool in oral and maxillo-facial lesions. JRMS. 2018;25(3):45–49. doi: 10.12816/00532
  67. Aboushady MA, Talaat W, Hamdoon Z, et al. Thermography as a non-ionizing quantitative tool for diagnosing periapical inflammatory lesions. BMC Oral Health. 2021;21(1):260. doi: 10.1186/s12903-021-01618-9
  68. Beresten NF. Functional diagnostics: a national guide. Beresten NF, Sandrikov VA, Fedorova SI, editors. Moscow: GEOTAR-Media; 2019. 784 р. (In Russ.).
  69. Young PY, Khadaroo RG. Surgical site infections. Surg Clin North Am. 2014;94(6):1245–64. doi: 10.1016/j.suc.2014.08.008
  70. Bustamante-Munguira J, Herrera-Gómez F, Ruiz-Álvarez M, Figuerola-Tejerina A, Hernández-Aceituno A. A New Surgical Site Infection Risk Score: Infection Risk Index in Cardiac Surgery. J Clin Med. 2019;8(4):480. doi: 10.3390/jcm8040480
  71. Kremers HM, Nwojo ME, Ransom JE, et al. Trends in the epidemiology of osteomyelitis: a population-based study, 1969 to 2009. J Bone Joint Surg Am. 2015;97(10):837–45. doi: 10.2106/JBJS.N.01350
  72. Slyamova G, Gusmanov A, Batpenov A, Kaliev N, Viderman D. Risk Factors for Postoperative Osteomyelitis among Patients after Bone Fracture: A Matched Case-Control Study. J Clin Med. 2022;11(20):6072. doi: 10.3390/jcm11206072
  73. Zhou AK, Girish M, Thahir A, et al. Radiological evaluation of postoperative osteomyelitis in long bones: Which is the best tool? J Perioper Pract. 2022;32(1–2):15–21. doi: 10.1177/1750458920961347
  74. Heitzmann LG, Battisti R, Rodrigues AF, et al. Postoperative Chronic Osteomyelitis in the Long Bones — Current Knowledge and Management of the Problem. Rev Bras Ortop (Sao Paulo). 2019;54(6):627–635. doi: 10.1016/j.rbo.2017.12.013
  75. Kliushin NM, Burnashov SI, Mekki WA, Leonchuk DS, Sudnitsyn AS. Treatment of postoperative tibial chronic osteomyelitis using bone transport techniques; an observational study. J Clin Orthop Trauma. 2021;24:101652. doi: 10.1016/j.jcot.2021.101652
  76. Bozhkova SA, Tihilov RM, Andriyashkin VV, et al. Prevention, diagnosis and treatment of thromboembolic complications in traumatology and orthopedics: methodological guidelines. Travmatologiya i ortopediya Rossii. 2022;28(3):136–166. (In Russ.). doi: 10.17816/2311-2905-1993 EDN: HMUVVU
  77. Shuvaev DB, Biryukova YuI, Ermolaev VA, Lebedev AI. Prevention of thromboembolic complications in the trauma department. Mnogoprofil’nyj stacionar. 2021;8(1):36–40. (In Russ.). EDN: NAOOKV
  78. Paciullo F, Bury L, Noris P, et al. Antithrombotic prophylaxis for surgery-associated venous thromboembolism risk in patients with inherited platelet disorders. The SPATA-DVT Study. Haematologica. 2020;105(7):1948–1956. doi: 10.3324/haematol.2019.227876
  79. Poon MC, d’Oiron R, Zotz RB, et al.; Glanzmann Thrombasthenia Registry Investigators. The international, prospective Glanzmann Thrombasthenia Registry: treatment and outcomes in surgical intervention. Haematologica. 2015;100(8):1038–44. doi: 10.3324/haematol.2014.121384
  80. Sivec NF, Babaren’ VV, Danilenko OA, CHirak VE. Postoperative complications after total endoprosthesis of major joints. Zdravoohranenie (Minsk). 2019;(8):26–38. (In Russ.). EDN: TIFRFQ
  81. Arcelus Martínez JI, Leiva Jiménez B, Ruiz Barrera L, et al. Prophylaxis of venous thromboembolism in general surgery in Spain. Analysis of a national survey. Cir Esp (Engl Ed). 2020;98(9):516–524. doi: 10.1016/j.ciresp.2020.04.020
  82. Paciullo F, Bury L, Noris P, et al. Antithrombotic prophylaxis for surgery-associated venous thromboembolism risk in patients with inherited platelet disorders. The SPATA-DVT Study. Haematologica. 2020;105(7):1948–1956. doi: 10.3324/haematol.2019.227876
  83. Bikdeli B, Jimenez D, Hawkins M, et al.; RIETE Investigators. Rationale, Design and Methodology of the Computerized Registry of Patients with Venous Thromboembolism (RIETE). Thromb Haemost. 2018;118(1):214–224. doi: 10.1160/TH17-07-0511
  84. Samodaj VG, Ryl’kov MI, Fedorishchev AP. Preduprezhdenie tromboembolicheskih oslozhnenij v travmatologii i ortopedii. Tendencii razvitiya nauki i obrazovaniya. 2021;(74–1):115–119. (In Russ.). doi: 10.18411/lj-06-2021-26 EDN: SQQACN
  85. Perng C-K, Ma H, Chiu Y-J, Lin P-H, Tsai C-H. Detection of free flap pedicle thrombosis by infrared surface temperature imaging. J Surg Res. 2018;229:169–176. doi: 10.1016/j.jss.2018.03.054
  86. Sachdeva A, Dalton M, Lees T. Graduated compression stockings for prevention of deep vein thrombosis. Cochrane Database Syst Rev. 2018;11(11):CD001484. doi: 10.1002/14651858.CD001484.pub4
  87. Knoedler S, Hoch CC, Huelsboemer L, et al. Postoperative free flap monitoring in reconstructive surgery-man or machine? Front Surg. 2023;10:1130566. doi: 10.3389/fsurg.2023.1130566
  88. Smolle MA, Leitner L, Böhler N, et al. Fracture, nonunion and postoperative infection risk in the smoking orthopaedic patient: a systematic review and metaanalysis. EFORT Open Rev. 2021;6(11):1006–1019. doi: 10.1302/20585241.6.210058
  89. Wang Z, Li K, Gu Z, Fan H, Li H. The risk assessment model of fracture nonunion after intramedullary nailing for subtrochanteric femur fracture. Medicine (Baltimore). 2021;100(12):e25274. doi: 10.1097/MD.0000000000025274
  90. Lee JI, Park JW, Park KC, Kim DH, Lee DH. Predictors for nonunion of unrepaired ulnar styloid fracture associated with distal radius fractures in patients treated with volar locking plate fixation and their effect on functional outcomes. Orthop Traumatol Surg Res. 2022;108(5):103322. doi: 10.1016/j.otsr.2022.103322
  91. Prado Campos D, Aguiar Mendonça CJ, Mendes J, Soni JF, Nohama P. Thermal variations in osteoporosis after aclasta administration: case study. Int J Onl Biomed Eng. 2020;16(10):82. doi: 10.3991/ijoe.v16i10.14635
  92. Di Benedetto M, Huston CW, Sharp MW, Jones B. Regional hypothermia in response to minor injury1. Am J Phys Med Rehabil. 1996;75(4):270–277. doi: 10.1097/00002060-19960700000006
  93. Bohl DD, Sershon RA, Saltzman BM, Darrith B, Della Valle CJ. Incidence, Risk Factors, and Clinical Implications of Pneumonia After Surgery for Geriatric Hip Fracture. The Journal of Arthroplasty. 2018;33(5):1552–1556.e1. doi: 10.1016/j.arth.2017.11.068
  94. Lv H, Yin P, Gao Y, Zhao Z, Li J. Clinical characteristics and risk factors of postoperative pneumonia after hip fracture surgery: a prospective cohort study. Osteoporos Int. 2016;27(10):3001–9. doi: 10.1007/s00198-016-3624-5
  95. Salarbaks AM, Lindeboom R, Nijmeijer W. Pneumonia in hospitalized elderly hip fracture patients: the effects on length of hospital-stay, in-hospital and thirty-day mortality and a search for potential predictors. Injury. 2020;51(8):1846–1850. doi: 10.1016/j.injury.2020.05.017
  96. Byun SE, Shon HC, Kim JW, Kim HK, Sim Y. Risk factors and prognostic implications of aspiration pneumonia in older hip fracture patients: A multicenter retrospective analysis. Geriatr Gerontol Int. 2019;19(2):119–123. doi: 10.1111/ggi.13559
  97. Higashikawa T, Shigemoto K, Goshima K, et al. Risk factors for the development of aspiration pneumonia in elderly patients with femoral neck and trochanteric fractures: A retrospective study of a patient cohort. Medicine (Baltimore). 2020;99(7):e19108. doi: 10.1097/MD.0000000000019108
  98. Ahn J, Chang JS, Kim JW. Postoperative Pneumonia and Aspiration Pneumonia Following Elderly Hip Fractures. J Nutr Health Aging. 2022;26(7):732–738. doi: 10.1007/s12603-0221821-9
  99. Xiang B, Jiao S, Si Y, et al. Risk Factors for Postoperative Pneumonia: A Case-Control Study. Front Public Health. 2022;10:913897. doi: 10.3389/fpubh.2022.913897
  100. Martinez-Jimenez MA, Loza-Gonzalez VM, Kolosovas-Machuca ES, et al. Diagnostic accuracy of infrared thermal imaging for detecting COVID-19 infection in minimally symptomatic patients. Eur J Clin Invest. 2021;51(3):e13474. doi: 10.1111/eci.13474
  101. Shen H, Zhao Z, Liu J, Zhou H. The application value of early postoperative pain management (EPPM) combined with skin temperature monitoring (STM) after flap repair of soft tissue defects in the lower limbs: a non-randomized controlled trial. Ann Palliat Med. 2022;11(3):1068–1076. doi: 10.21037/apm-22-161
  102. Hennessy O, Potter SM. Use of infrared thermography for the assessment of free flap perforators in autologous breast reconstruction: A systematic review. JPRAS Open. 2019;23:60–70. doi: 10.1016/j.jpra.2019.11.006
  103. Ji X, Li H, Gong H, Wen G, Sun R. Analysis of material parameter uncertainty propagation in preoperative flap suture simulation. Comput Methods Biomech Biomed Engin. 2024;27(15):2131–2144. doi: 10.1080/10255842.2023.2272009
  104. Mironov SP, Vetrile ST, Krupatkin AI, Shvec VV. Peculiarities of regional vegetative regulation and radicular microhemocirculation in patients with osteochondrosis before and after lumbar discectomy. Vestnik travmatologii i ortopedii im. N.N. Priorova. 2008;2:15–19. (In Russ.). EDN: JTGFYB
  105. Nazarenko AG, Krupatkin AI, Kuleshov AA, et al. Neuro-microcirculatory interrelationships in patients with kyphoscoliosis associated with neurological deficits. Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii. 2024;23(3):141–148. (In Russ.). doi: 10.37903/vsgma.2024.3.17 EDN: MUKFLN
  106. Saygin D, Highland KB, Tonelli AR. Microvascular involvement in systemic sclerosis and systemic lupus erythematosus. Microcirculation. 2019;26(3):e12440. doi: 10.1111/micc.12440
  107. Kashtanov AD, Vasil’ev YuL, Kuzin AN, Boronihina TV, Chilikov VV. Experience in the use of non-contact thermometry in evaluating the efficacy of treating small shallow wounds with trophic disorders of collagen-based sponge and dihestase. Operativnaya hirurgiya i klinicheskaya anatomiya (Pirogovskij nauchnyj zhurnal). 2019;3(4):21–27. (In Russ.). doi: 10.17116/operhirurg2019304121 EDN: XHSEOR
  108. Bondarenko SV. The method of impedanometry and thermometry in assessing the course of postoperative wounds. Forcipe. 2019;2(S):918. (In Russ.). EDN: UEPGTG

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Eco-Vector

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».