Группы базовых автоморфизмов хаотических картановых слоений со связностью Эресмана

Обложка

Цитировать

Полный текст

Аннотация

Цель работы — исследование групп базовых автоморфизмов хаотических картановых слоений со связностью Эресмана. Картановы слоения образуют категорию, где автоморфизмы сохраняют не только слоение, но и его трансверсальную картанову геометрию. Группой базовых автоморфизмов слоения называется фактор-группа группы всех автоморфизмов этого слоения по нормальной подгруппе слоевых автоморфизмов, относительно которых каждый слой инвариантен. Картановы слоения включают в себя такие обширные классы слоений как псевдоримановы, лоренцевы, слоения с трансверсальной аффинной связностью. Ограничения на размерность как слоения, так и слоеного многообразия не накладываются. Компактность слоеного многообразия не предполагается. Методы. Доказательство структурной теоремы для хаотических картановых слоений основано на применении конструкции слоеного расслоения, обычно используемой в теории слоений с трансверсальными геометриями. Результаты. Основным результатом данной работы является теорема о том, что группа базовых автоморфизмов любого хаотического картанова слоения со связностью Эресмана допускает структуру группы Ли и нахождение оценок размерности этой группы. В частности, доказано, что если множество замкнутых слоев счетно, то группа базовых автоморфизмов такого слоения счетна. Заключение. В настоящей работе доказан критерий, согласно которому хаотичность картанова слоения типа (G, H) эквивалентна хаотичности локально свободного действия группы H на ассоциированном параллелизуемом многообразии. Таким образом, проблема существования хаоса в картановых слоениях со связностью Эресмана сводится к той же проблеме для локально свободных действий группы Ли на параллелизуемых многообразиях.  

Об авторах

Нина Ивановна Жукова

Высшая школа экономики

ORCID iD: 0000-0002-4553-559X
Scopus Author ID: 16308609800
101000, Россия, Москва, ул. Мясницкая, 20

Ксения Игоревна Шеина

Высшая школа экономики

ORCID iD: 0000-0001-5742-7476
SPIN-код: 3202-3005
ResearcherId: M-4554-2015
101000, Россия, Москва, ул. Мясницкая, 20

Список литературы

  1. Кобаяси Ш. Группы преобразований в дифференциальной геометрии. М.: Наука, 1986. 223 с.
  2. Sheina K. I., Zhukova N. I. The groups of basic automorphisms of complete cartan foliations // Lobachevskii J. Math. 2018. Vol. 39. P. 271–280. doi: 10.1134/S1995080218020245.
  3. Leslie J. A remark on the group of automorphisms of a foliation having a dense leaf // J. Diff. Geom. 1972. Vol. 7, no. 3–4. P. 597–601. doi: 10.4310/jdg/1214431177.
  4. Белько И. В. Аффинные преобразования трансверсальной проектируемой связности на многообразии со слоением // Мат. сборник. 1982. Т. 117, № 2. С. 181–195.
  5. Hector J., Macias-Virgos E. Diffeological groups // Reseach and Exposition in Math. 2002. Vol. 25. P. 247–260.
  6. Blumenthal R. A., Hebda J. J. Ehresmann connection for foliations // Indiana Univ. Math. J. 1984. Vol. 33, no. 4. P. 597–611.
  7. Bazaikin Y. V., Galaev A. S., Zhukova N. I. Chaos in Cartan foliations // Chaos. 2020. Vol. 30, no. 10, 103116. P. 1–9. doi: 10.1063/5.0021596.
  8. Churchill R. C. On defining chaos in the absence of time. In: Hobill D., Burd A., Coley A. (eds) Deterministic Chaos in General Relativity. NATO Science Series. B 332. Boston: Springer, 1994. P. 107–112. doi: 10.1007/978-1-4757-9993-4_6.
  9. Devaney R. L. An Introduction to Chaotic Dynamical Systems. Menlo Park: The Benjamin/ Cummings Publishing Co., Inc., 1986. 320 p.
  10. Zhukova N. I. Chaotic foliations with Ehresmann connection // Journal of Geometry and Physics. 2024. Vol. 199. 105166. doi: 10.1016/j.geomphys.2024.105166.
  11. Жукова Н. И. Минимальные множества картановых слоений // Труды МИАН. 2007. Т. 256, № 1. С. 115–147. doi: 10.1134/S0081543807010075.
  12. Molino P. Riemannian Foliations. Progress in Mathematics, vol. 73. Boston: Birkhauser, 1988. 339 p.
  13. Kobayashi Sh., Nomizu K. Foundations of differential geometry I. New York–London: Interscience publ., 1969.
  14. Hermann R. The differential geometry of foliations // Ann. of Math. 1960. Vol. 72. Р. 445–457.
  15. Жукова Н. И. Структура римановых слоений со связностью Эресмана // Журнал СВМО. 2018. Т. 20, № 4. С. 395–407.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».