Простая и сложная динамика в модели эволюции двух миграционно связанных популяций с непересекающимися поколениями

Обложка

Цитировать

Полный текст

Аннотация

Цель работы — исследование механизмов, приводящих к возникновению генетической дивергенции (устойчивых генетических различий между двумя популяциями, связанными миграцией). Рассматривается «классическая» модельная ситуация: панмиктичные популяции с менделевскими правилами наследования, в которых действие естественного отбора (различия по приспособленностям) одинаково и определяется генотипами только одного диаллельного локуса. Предполагается, что смежные поколения не перекрываются и эволюционные преобразования можно отслеживать моделью с дискретным временем. Эта модель описывает изменение концентрации одного из аллелей в каждой популяции, а также отношение численностей популяций к общей численности. Методы. На основе аналога карт седел построены параметрические портреты, показывающие области параметров качественно разных режимов динамики. Исследование дополнено фазовыми портретами, бассейнами притяжения и бифуркационными диаграммами. Результаты. Обнаружено, что режимы динамики рассматриваемой модели качественно совпадают с режимами аналогичной модели с непрерывным временем, но только в случае слабой миграционной связи. В случае сильной связи возможны колебания фазовых переменных. Показано, что дивергенция, возможная лишь при пониженной приспособленности гетерозигот, является результатом ряда бифуркаций: бифуркации вил, удвоения периода или седлоузловой бифуркации. После этих качественных перестроек динамика становится бистабильной или квадростабильной. В первом случае соответствующие дивергенции решения неустойчивы и возможны лишь как часть переходного процесса. Во втором случае они устойчивы, и при сильной связи дивергенция проявляется в виде колебаний с периодом 2. Заключение. В области биологически значимых параметров движение к одной из предельных генетических структур (мономорфизм, полиморфизм или дивергенция) в смежных популяциях может быть строго монотонным, либо в виде затухающих колебаний, либо устойчивых колебаний с периодом 2. Вне этой области возникают сложные режимы динамики, которые состоят из серии расходящихся колебаний вокруг неподвижных точек и квазислучайных переходов между ними.

Об авторах

Матвей Павлович Кулаков

Институт комплексного анализа региональных проблем Дальневосточного отделения Российской академии наук

679016, Россия, Еврейская автономная область, Биробиджан, ул. Шолом-Алейхема, 4

Ефим Яковлевич Фрисман

Институт комплексного анализа региональных проблем Дальневосточного отделения Российской академии наук

679016, Россия, Еврейская автономная область, Биробиджан, ул. Шолом-Алейхема, 4

Список литературы

  1. Haldane J. B. S. A mathematical theory of natural and artificial selection. Part II. The influence of partial self-fertilisation, inbreeding, assortative mating, and selective fertilisation on the composition of Mendelian populations, and on natural selection // Biological Reviews. 1924. Vol. 1, no. 3. P. 158-163. doi: 10.1111/j.1469-185X.1924.tb00546.x.
  2. Fisher R. A. The Genetical Theory of Natural Selection. Oxford: Clarendon Press, 1930. 272 p. doi: 10.5962/bhl.title.27468.
  3. Wright S. Evolution in Mendelian populations // Genetics. 1931. Vol. 16, no. 2. P. 97-159. doi: 10.1093/genetics/16.2.97.
  4. Фрисман Е. Я., Шапиро А. П. Избранные математические модели дивергентной эволюции популяций. М.: Наука, 1977. 152 с.
  5. Свирежев Ю. М., Пасеков В. П. Основы математической генетики. М.: Наука, 1982. 512 с.
  6. Фрисман Е. Я., Первичная генетическая дивергенция (Теоретический анализ и моделирование). Владивосток: ДВНЦ АН СССР, 1986. 160 с.
  7. Burger R. A survey of migration-selection models in population genetics // Discrete & Continuous Dynamical Systems - B. 2014. Vol. 19, no. 4. P. 883-959. doi: 10.3934/dcdsb.2014.19.883.
  8. Carroll S. P., Hendry A. P., Reznick D. N., Fox C. W. Evolution on ecological time-scales // Functional Ecology. 2007. Vol. 21, no. 3. P. 387-393. doi: 10.1111/j.1365-2435.2007.01289.x.
  9. Pelletier F., Garant D., Hendry A. P. Eco-evolutionary dynamics // Phil. Trans. R. Soc. B. 2009. Vol. 364, no. 1523. P. 1483-1489. doi: 10.1098/rstb.2009.0027.
  10. Yeaman S., Otto S. P. Establishment and maintenance of adaptive genetic divergence under migration, selection, and drift // Evolution. 2011. Vol. 65, no. 7. P. 2123-2129. doi: 10.1111/j.1558-5646.2011.01277.x.
  11. Bertram J., Masel J. Different mechanisms drive the maintenance of polymorphism at locisubject to strong versus weak fluctuating selection // Evolution. 2019. Vol. 73, no. 5. P. 883-896. doi: 10.1111/evo.13719.
  12. Neverova G. P., Zhdanova O. L., Frisman E. Y. Effects of natural selection by fertility on the evolution of the dynamic modes of population number: bistability and multistability // Nonlinear Dyn. 2020. Vol. 101, no. 1. P. 687-709. doi: 10.1007/s11071-020-05745-w.
  13. Zhdanova O. L., Frisman E. Y. Genetic polymorphism under cyclical selection in long-lived species: The complex effect of age structure and maternal selection // Journal of Theoretical Biology. 2021. Vol. 512. P. 110564. doi: 10.1016/j.jtbi.2020.110564.
  14. Telschow A., Hammerstein P., Werren J. H. The effect of Wolbachia on genetic divergence between populations: Models with two-way migration // The American Naturalist. 2002. Vol. 160, no. S4. P. S54-S66. doi: 10.1086/342153.
  15. Fussmann G. F., Loreau M., Abrams P. A. Eco-evolutionary dynamics of communities and ecosystems // Functional Ecology. 2007. Vol. 21, no. 3. P. 465-477. doi: 10.1111/j.1365-2435.2007.01275.x.
  16. Tellier A., Brown J. K. M. Stability of genetic polymorphism in host-parasite interactions // Proc. R. Soc. B. 2007. Vol. 274, no. 1611. P. 809-817. doi: 10.1098/rspb.2006.0281.
  17. Nagylaki T., Lou Y. The dynamics of migration-selection models // In: Friedman A. (ed) Tutorials in Mathematical Biosciences IV. Vol. 1922 of Lecture Notes in Mathematics. Berlin, Heidelberg: Springer, 2008. P. 117-170. doi: 10.1007/978-3-540-74331-6_4.
  18. Akerman A., Burger R. The consequences of gene flow for local adaptation and differentiation: a two-locus two-deme model // J. Math. Biol. 2014. Vol. 68, no. 5. P. 1135-1198. doi: 10.1007/s00285-013-0660-z.
  19. Пасеков В. П. К анализу слабого двулокусного отбора по жизнеспособности и квазиравновесия по сцеплению // Доклады Академии наук. 2019. Т. 484, № 6. С. 781-785. doi: 10.31857/S0869-56524846781-785.
  20. Фрисман Е. Я., Кулаков М. П. О генетической дивергенции в системе двух смежных популяций, обитающих на однородном ареале // Известия вузов. ПНД. 2021. Т. 29, № 5. С. 706-726. doi: 10.18500/0869-6632-2021-29-5-706-726.
  21. Фрисман Е. Я., Жданова О. Л., Кулаков М. П., Неверова Г. П., Ревуцкая О. Л. Математическое моделирование популяционной динамики на основе рекуррентных уравнений: результаты и перспективы. Ч. II // Известия РАН. Серия биологическая. 2021. № 3. С. 227-240. doi: 10.31857/S000233292103005X.
  22. Altrock P. M., Traulsen A., Reeves R. G., Reed F. A. Using underdominance to bi-stably transform local populations // Journal of Theoretical Biology. 2010. Vol. 267, no. 1. P. 62-75. doi: 10.1016/j.jtbi.2010.08.004.
  23. Laruson A. J., Reed F. A. Stability of underdominant genetic polymorphisms in population networks // Journal of Theoretical Biology. 2016. Vol. 390. P. 156-163. doi: 10.1016/j.jtbi.2015.11.023.
  24. Гонченко А. С., Гонченко С. В., Казаков А. О., Козлов А. Д. Математическая теория динамического хаоса и её приложения: Обзор. Часть 1. Псевдогиперболические аттракторы // Известия вузов. ПНД. 2017. Т. 25, № 2. С. 4-36. doi: 10.18500/0869-6632-2017-25-2-4-36.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».