Study of the influence of synaptic plasticity on the formation of a feature space by a spiking neural network
- Autores: Lebedev A.A.1, Kazantsev V.B.2, Stasenko S.V.1
-
Afiliações:
- Lobachevsky State University of Nizhny Novgorod
- Institute of Applied Physics of the Russian Academy of Sciences
- Edição: Volume 32, Nº 2 (2024)
- Páginas: 253-267
- Seção: Articles
- URL: https://ogarev-online.ru/0869-6632/article/view/254258
- DOI: https://doi.org/10.18500/0869-6632-003092
- EDN: https://elibrary.ru/STLCRP
- ID: 254258
Citar
Texto integral
Resumo
Palavras-chave
Sobre autores
Andrey Lebedev
Lobachevsky State University of Nizhny Novgorod603950 Nizhny Novgorod, Gagarin Avenue, 23
Viktor Kazantsev
Institute of Applied Physics of the Russian Academy of Sciences
ORCID ID: 0000-0002-2881-6648
Researcher ID: L-1424-2013
ul. Ul'yanova, 46, Nizhny Novgorod , 603950, Russia
Sergey Stasenko
Lobachevsky State University of Nizhny Novgorod
ORCID ID: 0000-0002-3032-5469
Scopus Author ID: 55327776400
Researcher ID: J-4825-2013
603950 Nizhny Novgorod, Gagarin Avenue, 23
Bibliografia
- Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nature Neuroscience. 2000;3(9):919–926. doi: 10.1038/78829.
- Thorpe S, Delorme A, Van Rullen R. Spike-based strategies for rapid processing. Neural Networks. 2001;14(6–7):715–725. doi: 10.1016/S0893-6080(01)00083-1.
- Loiselle S, Rouat J, Pressnitzer D, Thorpe S. Exploration of rank order coding with spiking neural networks for speech recognition. In: Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005. 31 July 2005 - 04 August 2005, Montreal, QC, Canada. New York: IEEE; 2005. P. 2076–2080. doi: 10.1109/IJCNN.2005.1556220.
- Yamazaki K, Vo-Ho V-K, Bulsara D, Le N. Spiking neural networks and their applications: A review. Brain Sciences. 2022;12(7):863. doi: 10.3390/brainsci12070863.
- Bohte SM, Kok JN, La Poutre H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing. 2002;48(1–4):17–37. doi: 10.1016/S0925-2312(01)00658-0.
- Markram H, Gerstner W, Sjostrom PJ. Spike-timing-dependent plasticity: a comprehensive overview. Frontiers in Synaptic Neuroscience. 2012;4:2. doi: 10.3389/fnsyn.2012.00002.
- Stasenko SV, Kazantsev VB. Dynamic image representation in a spiking neural network supplied by astrocytes. Mathematics. 2023;11(3):561. doi: 10.3390/math11030561.
- Stasenko SV, Kazantsev VB. Information encoding in bursting spiking neural network modulated by astrocytes. Entropy. 2023;25(5):745. doi: 10.3390/e25050745.
- Stasenko SV, Mikhaylov AN, Kazantsev VB. Model of neuromorphic odorant-recognition network. Biomimetics. 2023;8(3):277. doi: 10.3390/biomimetics8030277.
- Gordleeva SY, Tsybina YA, Krivonosov MI, Ivanchenko MV, Zaikin AA, Kazantsev VB, Gorban AN. Modeling working memory in a spiking neuron network accompanied by astrocytes. Frontiers in Cellular Neuroscience. 2021;15:631485. doi: 10.3389/fncel.2021.631485.
- Masquelier T, Guyonneau R, Thorpe S. Spike timing dependent plasticity finds the start of repeating patterns in continuous spike trains. PLoS ONE. 2008;3(1):e1377. doi: 10.1371/journal. pone.0001377.
- Guo W, Fouda ME, Eltawil AM, Salama KN. Neural coding in spiking neural networks: A comparative study for robust neuromorphic systems. Frontiers in Neuroscience. 2021;15:638474. doi: 10.3389/fnins.2021.638474.
- Borgers C. Linear integrate-and-fire (LIF) neurons. In: An Introduction to Modeling Neuronal Dynamics. Vol. 66 of Texts in Applied Mathematics. Cham: Springer; 2017. P. 45–50. DOI: 10. 1007/978-3-319-51171-9_7.
- Bi G-Q, Poo M-M. Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neurosci. 1998;18(24):10464–10472. doi: 10.1523/JNEUROSCI.18-24-10464.1998.
- Deng L. The MNIST database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Processing Magazine. 2012;29(6):141–142. doi: 10.1109/MSP.2012. 2211477.
- Sterratt D, Graham B, Gillies A, Willshaw D. Principles of Computational Modelling in Neuroscience. Cambridge: Cambridge University Press; 2011. 390 p. doi: 10.1017/CBO97805 11975899.
- Chen Y. Mechanisms of winner-take-all and group selection in neuronal spiking networks. Frontiers in Computational Neuroscience. 2017;11:20. doi: 10.3389/fncom.2017.00020.
Arquivos suplementares
