Variational approach to the construction of discrete mathematical model of the pendulum motion with vibrating suspension with friction

Capa

Citar

Texto integral

Resumo

The main purpose of this work is, first, a construction of the indirect Hamilton’s variational principle for the problem of motion of a pendulum with a vibration suspension with friction, oscillating along a straight line making a small angle with the vertical line. Second, the construction on its basis of the difference scheme. Third, to carry out its investigation by methods of numerical analysis. Methods. The problem of motion of the indicated pendulum is considering as a particular case of the given boundary problem for a nonlinear second order differential equations. For the solution of problem of its variational formulation there is used the criterion of potentiality of operators — the symmetry of the Gateaux derivative of nonlinear operator of the given problem. This criterion is also used for the construction of variational multiplier and the corresponding Hamilton’s variational principle. On its basis there is constructed and investigated a discrete analog of the given boundary problem and a problem of motion of the pendulum. Results. It is proved that the operator of the given boundary problem is not potential with respect to the classical bilinear form. There is found a variational multiplier and constructed the corresponding indirect Hamilton’s variational principle. On its basis there is obtained a discrete analog of the given boundary problem and its solution is found. As particular cases one can deduce from that the corresponding results for the problem of motion of the pendulum. There are performed numerical experiments, establishing the dependence of solutions of the problem of motion of the pendulum on the change of parameters. Conclusion. There is worked out a variational approach to the construction of two difference schemes for the problem of a pendulum with a suspension with friction, oscillating along a straight line making a small angle with the vertical line. There are presented results of numerical simulation under different parameters of the problem. Numerical results show that under sufficiently small amplitude and sufficiently big frequency of the oscillations of the point of suspension the pendulum realizes a periodical motion.

Sobre autores

Vladimir Savchin

RUDN University

Moscow Miklukho-Maklaya str.6

Phuoc Trinh

RUDN University

Moscow Miklukho-Maklaya str.6

Bibliografia

  1. Капица П. Л. Динамическая устойчивость маятника при колеблющейся точке подвеса // Журнал экспериментальной и теоретической физики. 1951. Т. 21, № 5. С. 588-597.
  2. Капица П. Л. Маятник с вибрирующим подвесом // Успехи физических наук. 1951. Т. 44, № 5. С. 7-20. doi: 10.3367/UFNr.0044.195105b.0007.
  3. Боголюбов Н. Н. Теория возмущений в нелинейной механике // Сборник трудов Института строительной механики (АН УССР). 1950. Т. 14. С. 9-34.
  4. Богатов Е. М., Мухин Р. Р. Метод усреднения, маятник с вибрирующим подвесом: Н. Н. Боголюбов, А. Стефенсон, П. Л. Капица и другие // Известия вузов. ПНД. 2017. Т. 25, № 5. С. 69-87. doi: 10.18500/0869-6632-2017-25-5-69-87.
  5. Butikov E. I. The rigid pendulum - an antique but evergreen physical model // European Journal of Physics. 1999. Vol. 20, no. 6. P. 429-441. doi: 10.1088/0143-0807/20/6/308.
  6. Самарский А. А. Теория разностных схем. М.: Наука, 1989. 656 с.
  7. Головизнин В. М., Самарский А. А., Фаворский А. П. Вариационный подход к построению конечно-разностных моделей в гидродинамике // Доклады Академии наук СССР. 1977. Т. 235, № 6. С. 1285-1288.
  8. Филиппов В. М., Савчин В. М., Шорохов С. Г. Вариационные принципы для непотенциальных операторов // Итоги науки и техники. Серия «Современные проблемы математики. Новейшие достижения». Т. 40. М.: ВИНИТИ, 1992. С. 3-176.
  9. Савчин В. М. Математические методы механики бесконечномерных непотенциальных систем. М.: Издательство Университета дружбы народов, 1991. 237 с.
  10. Демиденко Г. В., Дулепова А. В. Об устойчивости движения перевернутого маятника с вибрирующей точкой подвеса // Сибирский журнал индустриальной математики. 2018. Т. 21, № 4. С. 39-50. doi: 10.17377/sibjim.2018.21.404.
  11. Демиденко Г. В., Дулепова А. В. О периодических решениях одного дифференциального уравнения второго порядка // Современная математика. Фундаментальные направления. 2021. Т. 67, № 3. С. 535-548. doi: 10.22363/2413-3639-2021-67-3-535-548.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».