Measuring cognitive potential based on the performance of tasks of various levels of complexity

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Purpose of work. The article is devoted to the topic of measuring the cognitive potential of a person on the basis of the obtained experimental data in order to identify its potential capabilities, as well as to monitor their dynamics, for example, to diagnose recovery after an illness. This goal is divided in the study into two tasks, namely, to assess the cognitive potential, it is necessary to develop two algorithms: 1. Assessment of the level of cognitive complexity of tasks. 2. Systems of levels of cognitive potential for an individual. Methods. The basis of the methods is a set of experimental, including specially developed author’s, techniques, as well as mathematical methods for processing data and calculating the entered specific parameters to formalize the cognitive potential. Results. On the basis of these methods, methods (and specific formulas) are proposed for calculating the cognitive potential of an individual using experimental data and tasks of various levels of complexity. Conclusion. Within the framework of this study, a methodology for determining the value of cognitive potential was created on the basis of the theory of information images / representations, as well as a specially developed web-toolkit for objectifying cognitive skills (including the so-called softskills). This value can be useful, both in studies related to changes in cognitive abilities as a result of the influence of various internal and external factors (for example, learning, diseases, injuries, etc.), diagnostic goals (for example, with the aim of determining the speed recovery after a disease that affects cognitive activity, such as a stroke or SARS-CoV-2), and in the formation of requirements for certain work positions that significantly depend on the cognitive abilities of the individual.

Авторлар туралы

Aleksandr Petukhov

Keldysh Institute of Applied Mathematics of RAS

ORCID iD: 0000-0002-7412-5397
603950 Nizhny Novgorod, Gagarin Avenue, 23

Sofia Polevaia

Lobachevsky State University of Nizhny Novgorod

ORCID iD: 0000-0002-3896-787X
603950 Nizhny Novgorod, Gagarin Avenue, 23

Әдебиет тізімі

  1. Александров Ю. И. Психофизиологические закономерности научения и методы обучения // Психологический журнал. 2012. Т. 33, № 6. С. 5-19.
  2. Кожевников В. В., Полевая С. А., Шишалов И. С., Бахчина А. В. Мобильный HR-измеритель (HR-измеритель). Свидетельство о государственной регистрации программ для ЭВМ 2014618634 от 26.08.2014.
  3. Vandekerckhove J. A cognitive latent variable model for the simultaneous analysis of behavioral and personality data // Journal of Mathematical Psychology. 2014. Vol. 60. P. 58-71. doi: 10.1016/j.jmp.2014.06.004.
  4. Faugeras O., Inglis J. Stochastic neural field equations: a rigorous footing // Journal of Mathematical Biology. 2015. Vol. 71, no. 2. P. 259-300. doi: 10.1007/s00285-014-0807-6.
  5. Kooi B. W. Modelling the dynamics of traits involved in fighting-predators-prey system // Journal of Mathematical Biology. 2015. Vol. 71, no. 6-7. P. 1575-1605. doi: 10.1007/s00285-015-0869-0.
  6. Haazebroek P., van Dantzig S., Hommel B. A computational model of perception and action for cognitive robotics // Cognitive Processing. 2011. Vol. 12, no. 4. P. 355. doi: 10.1007/s10339-011-0408-x.
  7. Geukes S., Gaskell M. G., Zwitserlood P. Stroop effects from newly learned color words: effects of memory consolidation and episodic context // Frontiers in Psychology. 2015. Vol. 6. P. 278. doi: 10.3389/fpsyg.2015.00278.
  8. Полевая С. А., Еремин Е. В., Буланов Н. А., Бахчина А. В., Ковальчук А. В., Парин С. Б. Событийно-связанная телеметрия ритма сердца для персонифицированного дистанционного мониторинга когнитивных функций и стресса в условиях естественной деятельности // Современные технологии в медицине. 2019. T. 11, № 1. C. 109-115. doi: 10.17691/stm2019.11.1.13.
  9. Almeria M., Cejudo J. C., Sotoca J., Deus J., Krupinski J. Cognitive profile following COVID-19 infection: Clinical predictors leading to neuropsychological impairment // Brain, Behavior, & Immunity - Health. 2020. Vol. 9. P. 100163. doi: 10.1016/j.bbih.2020.100163.
  10. Анохин К. В. Генные зонды для картирования нервных сетей при обучении // Принципы и механизмы деятельности мозга человека. Л.: Наука, 1989. С. 191-192.
  11. Petukhov A. Y., Polevaya S. A., Yakhno V. G. The theory of information images: Modeling based on diffusion equations // International Journal of Biomathematics. 2016. Vol. 9, no. 6. P. 1650087. doi: 10.1142/S179352451650087X.
  12. Petukhov A. Y., Polevaya S. A. Modeling of communicative individual interactions through the theory of information images // Current Psychology. 2017. Vol. 36, no. 3. P. 428-433. doi: 10.1007/s12144-016-9431-5.
  13. Petukhov A. Y., Polevaya S. A. Modeling of cognitive brain activity through the information images theory in terms of the bilingual Stroop test // International Journal of Biomathematics. 2017. Vol. 10, no. 7. P. 1750092. doi: 10.1142/S1793524517500929.
  14. Petukhov A. Y., Polevaya S. A., Polevaya A. V. Experimental diagnostics of the emotional state of individuals using external stimuli and a model of neurocognitive brain activity // Diagnostics. 2022. Vol. 12, no. 1. P. 125. doi: 10.3390/diagnostics12010125.
  15. Friston K. J., Price C. J. Dynamic representations and generative models of brain function // Brain Research Bulletin. 2001. Vol. 54, no. 3. P. 275-285. doi: 10.1016/S0361-9230(00)00436-6.
  16. Guclu U., van Gerven M. A. J. Modeling the dynamics of human brain activity with recurrent neural networks // Frontiers in Computational Neuroscience. 2017. Vol. 11. P. 7. doi: 10.3389/fncom.2017.00007.
  17. Herweg N. A., Kahana M. J. Spatial representations in the human brain // Frontiers in Human Neuroscience. 2018. Vol. 12. P. 297. doi: 10.3389/fnhum.2018.00297.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».