Statistical Analysis of Precision Water Level Data from Observations in a Seismoactive Region: Case Study of the YuZ-5 Well, Kamchatka


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

A new method is presented for statistical analysis of long-term time series of water level observations aimed at distinguishing short-term disturbances; observation data from the YuZ-5 well, located in the Petropavlovsk Geodynamic Test Area, eastern Kamchatka, are considered. These data (from July 27, 2012, to February 1, 2018) are remarkable for their degree of detail: the sampling rate of the water level and atmospheric pressure measurements was 5 min and the sensitivity (accuracy) was ±0.1 cm for water level recording and ±0.1 hPa for atmospheric pressure. Also, five strong earthquakes with Mw = 6.5–8.3 occurred at epicentral distances of de = 80–700 km during the observation period. A thorough analysis of the hydrodynamic regime of the observation well over a long period and the high quality of observation data, together with the data on strong seismic events, allow us to consider the possibility of using formalized statistical methods of water level data processing for diagnostics of anomalous conditions. As a result of factor and cluster analysis applied to the sequence of multidimensional vectors of the statistical properties of water level time series in successive one-day-long time windows, after adaptive compensation for atmospheric pressure, four different statistically significant states of time series, replacing each other in time, are distinguished. Geophysical interpretation of the anomalous conditions of the water level time series (with a probability of 0.013) is carried out in comparison to strong earthquakes, technical conditions of observations, and seasonal features of the hydrodynamic regime in the observation well. It is shown that this method of water level data processing can detect short-term anomalies in the hydrogeodynamic regime of a well, significantly supplementing traditional processing of water level data aimed mostly at finding low-frequency trends in water level changes. This method can be applied in geophysical monitoring and prediction of earthquakes from online processing of water level data in wells.

Об авторах

G. Kopylova

Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences

Автор, ответственный за переписку.
Email: gala@emsd.ru
Россия, Petropavlovsk-Kamchatsky, 683006

A. Lyubushin

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: gala@emsd.ru
Россия, Moscow, 123242

S. Boldina

Kamchatka Branch, Geophysical Survey, Russian Academy of Sciences

Email: gala@emsd.ru
Россия, Petropavlovsk-Kamchatsky, 683006

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Allerton Press, Inc., 2019

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».