АНАЛИТИЧЕСКАЯ МОДЕЛЬ ГИБРИДНОЙ СХЕМЫ НАЗНАЧЕНИЯ РАДИОРЕСУРСОВ ПРИ ОБСЛУЖИВАНИИ ТРАФИКА УДАЛЕННОГО УПРАВЛЕНИЯ В СЕТЯХ 5G V2X

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассматривается сценарий передачи данных в восходящем канале в сетях 5G Vehicle-to-Everything (V2X) при удаленном управлении транспортным средством. Ключевыми особенностями данного типа трафика являются переменный размер генерируемых пакетов и строгое ограничение на время доставки пакета. Для обслуживания трафика различных пользователей базовая станция использует гибридную схему назначения радиоресурсов: каждому пользователю назначается как выделенный подканал, так и общий подканал, который используется, когда ресурсов в выделенном канале оказывается недостаточно для передачи пакета. Построена аналитическая модель передачи данных в восходящем канале с использованием данной схемы, которая позволяет оценить вероятность потери пакета для каждого пользователя при заданных параметрах схемы. Показано, как с помощью аналитической модели выбирать оптимальные параметры гибридной схемы, максимизирующие емкость сети.

Об авторах

Н. А Николаев

Институт проблем передачи информации им. А.А. Харкевича РАН; Московский независимый исследовательский институт искусственного интеллекта (МНИИ ИИ)

Email: nikolaev@wnlab.ru
Москва, Россия; Москва, Россия

А. Э Шашин

Институт проблем передачи информации им. А.А. Харкевича РАН

Email: shashin@wnlab.ru
Москва, Россия

А. Н Красилов

Институт проблем передачи информации им. А.А. Харкевича РАН

Email: krasilov@wnlab.ru
Москва, Россия

Е. М Хоров

Институт проблем передачи информации им. А.А. Харкевича РАН; Московский независимый исследовательский институт искусственного интеллекта (МНИИ ИИ)

Email: khorov@wnlab.ru
Москва, Россия; Москва, Россия

Список литературы

  1. Parekh D., Poddar N., Rajpurkar A., Chahal M., Kumar N., Joshi G.P., Cho W. A Review on Autonomous Vehicles: Progress, Methods and Challenges // Electronics. 2022. V. 11. № 14. P. 2162 (188 pp.). https://doi.org/10.3390/electronics11142162
  2. Belogaev A., Elokhin A., Krasilov A., Khorov E., Akyildiz I.F. Cost-Effective V2X Task Offloading in MEC-Assisted Intelligent Transportation Systems // IEEE Access. 2020. V. 8. P. 169010–169023. https://doi.org/10.1109/ACCESS.2020.3023263
  3. Yan J., H¨arri J. On the Feasibility of URLLC for 5G-NR V2X Sidelink Communication at 5.9 GHz // Proc. 2022 IEEE Global Communications Conf. (GLOBECOM 2022). Rio de Janeiro, Brazil. Dec. 4–8, 2022. P. 3599–3604. https://doi.org/10.1109/GLOBECOM48099.2022.10000606
  4. Iliopoulos C., Iossifides A., Foh C.H., Chatzimisios P. IEEE 802.11BD for Next-Generation V2X Communications: From Protocol to Services // IEEE Commun. Stand. Mag. 2025. V. 9. № 2. P. 88–98. https://doi.org/10.1109/MCOMSTD.2025.3569015
  5. Torgunakov V., Loginov V., Khorov E. A Study of Channel Bonding in IEEE 802.11bd Networks // IEEE Access. 2022. V. 10. P. 25514–25533. https://doi.org/10.1109/ACCESS.2022.3155814
  6. Garcia M.H.C., Molina-Galan A., Boban M., Gozalvez J., Coll-Perales B., ¸Sahin T. A Tutorial on 5G NR V2X Communications // IEEE Commun. Surv. Tutor. 2021. V. 23. № 3. P. 1972–2026. https://doi.org/10.1109/COMST.2021.3057017
  7. Bankov D., Khorov E., Krasilov A., Otmakhov A. Analytical Model of 5G V2X Mode 2 for Sporadic Traffic // IEEE Wirel. Commun. Lett. 2023. V. 12. № 8. P. 1449–1453. https://doi.org/10.1109/LWC.2023.3278181
  8. Service Requirements for Enhanced V2X Scenarios: 5G (3GPP Tech. Specification TS22.186; version 19.0.0, Release 19), Oct. 2025.
  9. NR; Physical Layer Procedures for Data: 5G (3GPP Tech. Specification TS-38.214), 2021.
  10. NR; Medium Access Control (MAC) Protocol Specification: 5G (3GPP Tech. Specification TS-38.321), 2021.
  11. Шашин А.Э., Красилов А.Н. Анализ эффективности метода Grant-Free для обслуживания XR-трафика // Сб. трудов 48-й междисциплинарной школы-конференции ИППИ РАН ≪Информационные технологии и системы≫ (ИТиС 2024). Воронеж, Москва, 16–20 сентября 2024. М: ИППИ РАН, 2024. С. 413–420. https://doi.org/10.53921/itas2024_413
  12. Шашин А.Э., Красилов А.Н. Гибридная схема назначения канальных ресурсов для обслуживания XR-трафика в восходящем канале в сетях 5G // Тр. 67-й Всеросс. Научной конф. МФТИ ≪Радиотехника и компьютерные технологии≫ (Москва 2025). С. 265–267.
  13. Kim K.S., Kim D.K., Chae C.B., Choi S., Ko Y.-C., Kim J. Ultrareliable and Low-Latency Communication Techniques for Tactile Internet Services // Proc. IEEE. 2019. V. 107. № 2. P. 376–393. https://doi.org/10.1109/JPROC.2018.2868995
  14. Stafidas E., Foukalas F. A Survey on Enabling XR Services in Beyond 5G Mobile Networks // IEEE Access. 2024. V. 12. P. 59170–59197. https://doi.org/10.1109/ACCESS.2024.3392509
  15. Gunturu A., Tijoriwala V.S., Reddy Chavva A.K. Optimal Configured Grant Selection Method for NR Rel-16 Uplink URLLC // Proc. 2020 IEEE Global Communications Conf. (GLOBECOM 2020). Taipei, Taiwan. Dec. 7–11, 2020. P. 1–6. https://doi.org/10.1109/GLOBECOM42002.2020.9322288
  16. Zhang T., Hu X.S., Han S. Contention-Free Configured Grant Scheduling for 5G URLLC Traffic // Proc. 60th ACM/IEEE Design Automation Conf. (DAC 2023). San Francisco, CA. July 9–13, 2023. P. 1–6. https://doi.org/10.1109/DAC56929.2023.10247842
  17. Korneev E., Liubogoshchev M., Bankov D., Khorov E. How to Model Cloud VR: An Empirical Study of Features That Matter // IEEE Open J. Commun. Soc. 2024. V. 5. P. 4155–4170. https://doi.org/10.1109/OJCOMS.2024.3409472
  18. Zhang Y., Tang W., Liu Y. Multicell Grant-Free Uplink IoT Networks With Hard Deadline Services in URLLC // IEEE Wirel. Commun. Lett. 2022. V. 11. № 7. P. 1448–1452. https://doi.org/10.1109/LWC.2022.3173471
  19. Shashin A., Belogaev A., Krasilov A., Khorov E. Adaptive Parameters Selection for Uplink Grant-Free URLLC Transmission in 5G Systems // Comput. Netw. 2023. V. 222. P. 109527. https://doi.org/10.1016/j.comnet.2022.109527
  20. Liu Y., Deng Y., Elkashlan M., Nallanathan A., Karagiannidis G.K. Analyzing Grant-Free Access for URLLC Service // IEEE J. Select. Areas Commun. 2021. V. 39. № 3. P. 741–755. https://doi.org/10.1109/JSAC.2020.3018822
  21. Berardinelli G., Mahmood N.H., Abreu R., Jacobsen T., Pedersen K., Kov´asc I.Z. Reliability Analysis of Uplink Grant-Free Transmission Over Shared Resources // IEEE Access. 2018. V. 6. P. 23602–23611. https://doi.org/10.1109/ACCESS.2018.2827567
  22. URLLC System Level Simulation Assumptions. 3GPP TSG-RAN WG1 Meeting № 86. Gothenburg, Sweden. Aug. 22–26, 2016. Rep. R1-166398.
  23. Lagen S., Wanuga K., Elkotby H., Goyal S., Particiello N., Giupponi L. New Radio Physical Layer Abstraction for System-Level Simulations of 5G Networks // Proc. 2020 IEEE Int. Conf. on Communications (ICC 2020). Dublin, Ireland. June 7–11, 2020. P. 1–7. https://doi.org/10.1109/ICC40277.2020.9149444
  24. Lu B., Yue G., Wang X. Performance Analysis and Design Optimization of LDPC-Coded MIMO OFDM Systems // IEEE Trans. Signal Process. 2004. V. 52. № 2. P. 348–361. https://doi.org/10.1109/TSP.2003.820991
  25. Hareedy A., Amiri B., Galbraith R., Dolecek L. Non-Binary LDPC Codes for Magnetic Recording Channels: Error Floor Analysis and Optimized Code Design // IEEE Trans. Commun. 2016. V. 64. №8. P. 3194–3207. https://doi.org/10.1109/TCOMM.2016.2574869
  26. Network Simulator 3 (ns-3). https://www.nsnam.org/.
  27. Hata M. Empirical Formula for Propagation Loss in Land Mobile Radio Services // IEEE Trans. Veh. Technol. 1980. V. 29. № 3. P. 317–325. https://doi.org/10.1109/T-VT.1980.23859
  28. LTE System Toolbox 5G Library. MATLAB User Community. https://www.mathworks.com/matlabcentral/fileexchange/61585-lte-system-toolbox-5g-library.
  29. Study on XR (Extended Reality) Evaluations for NR: 5G (3GPP Tech. Rep. TR-38.838), 2021.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).