_____ ДИАГНОСТИКА ——

УЛК 537.525

ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ И ЭМИССИОННЫЕ СПЕКТРЫ ПЛАЗМЫ ТЕТРАФТОРМЕТАНА

© 2023 г. Д. Б. Мурин^{1, *}, С. А. Пивоваренок¹, И. А. Чесноков¹, И. А. Гогулев¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Ивановский государственный химико-технологический университет", Иваново, Россия

*E-mail: dim86@mail.ru

Поступила в редакцию 05.07.2022 г. После доработки 14.07.2022 г. Принята к публикации 14.07.2022 г.

Исследованы электрофизические характеристики плазмы тетрафторметана в зависимости от внешних параметров разряда (давление газа, сила тока разряда) в широком диапазоне условий. Показано, что величина температуры газа линейно возрастает с ростом давления газа и тока разряда. Поведение приведенной напряженности электрического поля при малых давлениях типично для электроотрицательных газов. Получены и подробно проанализированы спектры излучения плазмы тетрафторметана. Показано, что излучение плазмы представлено атомарными и молекулярными компонентами, а зависимости интенсивностей излучения линий от внешних условий разряда определяются возбуждением излучающих состояний при прямых электронных ударах. Показано, что характер полученных зависимостей $I = f\left(i, p\right)$ не противоречит общим представлениям о кинетике процессов образования и гибели активных частиц в молекулярных газах, что позволяет использовать рассмотренные максимумы для контроля состава плазмы и кинетики плазмохимических процессов.

Ключевые слова: плазма, электрофизические характеристики, фреон, температура газа, удельная мощность, приведенная напряженность электрического поля, эмиссионные спектры, интенсивность излучения, концентрации частиц, излучательные состояния

DOI: 10.31857/S0544126922700089, EDN: CYABJM

1. ВВЕДЕНИЕ

Современная техника предъявляет очень высокие требования к интегральным микросхемам по надежности, быстродействию, информационной емкости и другим параметрам. Поэтому основными тенденциями развития микро- и наноэлектроники являются повышение степени интеграции и информационной емкости интегральных микросхем с одновременным уменьшением стоимости бита информации. Для достижения вышеуказанных требований в данной технологии при проведении "сухого" травления металлов и полупроводниковых материалов стали применяться плазмохимические процессы.

В данной работе объектом исследования является тетрафторметан (СF₄, фреон R-14). Фреон R-14 — бесцветный газ, без запаха. Фреон очень инертен в химическом отношении, поэтому он не горит на воздухе, невзрывоопасен даже при контакте с открытым пламенем. Устойчив к действию кислот и щелочей. Фреон R-14 играет важную роль в промышленности плазменного травления [1, 2], так как может легко диссоциировать на химически активные частицы F и радика-

лы CF_x (x=1-3). Он часто используется для травления Si, Ge, обеспечивая технологически приемлемые скорости взаимодействия, а также удовлетворяет требованиям по разрешению, анизотропии и селективности для большинства известных маскирующих покрытий.

Однако широкое применение плазмообразующих сред на основе фреона R-14 в технологических целях невозможно без предварительного изучения спектральных и электрофизических параметров плазмы для создания наиболее благоприятных и оптимальных технологических режимов обработки. Проработка этого вопроса и явилась целью настоящей работы.

2. МЕТОДИЧЕСКАЯ ЧАСТЬ

Эксперименты по исследованию свойств плазмы тетрафторметана проводились на плазмохимической установке с реактором проточного типа. Реактор представлял собой цилиндр из молибденового стекла (марка C-49) длиной $l=56\,\mathrm{cm}$ и внешним диаметром $d_\mathrm{out}=2.8\,\mathrm{cm}$. Внутренний диаметр реактора d_in при этом составлял 2.5 см.

Электроды располагались в боковых отростках и имели вид полых цилиндров из анодированного алюминия. Длина разрядного промежутка составляла 36 см.

Откачка системы осуществлялась форвакуумным насосом ВН-461 (предельное остаточное давление $\sim 2 \times 10^{-2}$ Па). Контроль давления остаточных газов осуществлялся с помощью манометрического термопарного датчика ПМТ-2, соединенного с вакуумметром ВТ-2А. Давление рабочего газа в реакторе измерялось U-образным манометром, рабочей жидкостью которого служило силиконовое масло ($\rho = 1.04 \, \text{г/см}^3$). Расход газа измеряли масляным капиллярным реометром, откалиброванным по тетрафторметану с помощью мерной бюретки, известного объема. Тетрафторметан набирали в хлорвиниловую емкость, предварительно откаченную до предельного остаточного давления порядка 1 Па, из металлического баллона с маркой "чистый", содержание основного газа не менее 99.5%.

Плазма тетрафторметана возбуждалась от высоковольтного трансформатора НОМ 6000/100, первичная обмотка которого питалась от ЛАТРа, последнее позволяло плавно изменять выходное напряжение в диапазоне 0—6000 В. Выход высоковольтного трансформатора соединен с выпрямительным устройством — диодным мостом и конденсатором (10 мкФ) для сглаживания пульсации напряжения, питающего разряд. Сила тока в цепи разряда измерялась миллиамперметром М366 электромагнитной системы.

Температура нейтральных частиц плазмы (T)вычислялась путем решения уравнения теплового баланса реактора с использованием экспериментальных данных по температуре наружной стенки (T_w) [3, 4]. Температура наружной стенки реактора определялась с помощью хромель-копелевой термопары. Для измерения осевой напряженности электрического поля в плазме был использован двухзондовый компенсационный метод [5]. Напряжение между двумя остеклованными зондами (материал медь, диаметр зондов ≈ 0.05 мм, расстояние между зондами 7.7 см), вводимыми в зону разряда, компенсировалось с помощью универсального источника питания УИП-1. При помощи нуль-индикатора (миллиамперметр М906) регистрировалось отсутствие тока в цепи зондов, а напряжение компенсации определялось с помощью мультиметра Ц3421. При определении приведенной напряженности электрического поля (E/N) полагалось, что распределение температуры по радиусу трубки подчиняется функции Бесселя первого рода нулевого порядка [6, 7], а в конкретных расчетах использовалась величина температуры, усредненная на полурадиус реактора $(T_{0.5r})$, при этом распределение величины (E/N) по радиусу реактора не учитывалось.

Спектральные исследования плазмы тетрафторметана методом оптической эмиссионной спектроскопии были реализованы непосредственно с использованием торцевой части реактора, содержащей кварцевое стекло, с помощью ПЗС-спектрометров AvaSpec—2048—2 и AvaSpec—3648. Рабочий диапазон длин волн составлял 200—1000 нм. При расшифровке спектров излучения использовались справочники [8, 9]. Контроль примесей компонентов атмосферного воздуха в основном газе осуществлялся качественно, по наличию или отсутствию полос излучения N_2 , OH и CO в спектрах излучения.

В качестве задаваемых параметров плазмы выступали ток разряда (i=15-25 мA), давление газа (p=20-200 Па).

3. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Эксперименты показали, что увеличение давления тетрафторметана при i = const приводит к заметному росту осевой напряженности электрического поля (табл. 1, например, в 2.2 раза для i == 15 мА и в 2.8 раза для i = 25 мА в диапазон p == 20-200 Па) и, как следствие, сопровождается линейным ростом удельной мощности (рис. 1), вкладываемой в плазму тетрафторметана $W = iE/\pi r^2$, где i — ток разряда, E — осевая напряженность электрического поля, r — радиус реактора. Аналогичное изменение величины W имеет место и при увеличении тока разряда в условиях неизменного давления газа, которое обеспечивает $E \approx \text{const.}$ Поэтому в обоих случаях температура газа увеличивается, следуя поведению W (рис. 2). Из зависимостей рис. 2 видно, что величина температуры газа практически линейно возрастает с ростом давления газа (например, в 1.1 раза для i = 15 мА и в 1.2 раза для i = 25 мА в диапазоне p = 20-200 Па) и тока разряда (≈1.2 раза при давлении 200 Па). Данный факт хорошо согласуется с имеющимися в литературе данными для других газов [10].

Приведенная напряженность электрического поля E/N в плазме тетрафторметана практически не зависит (в пределах погрешности эксперимента) от тока разряда при p = const, но заметно уменьшается с ростом давления газа при i = const(рис. 3). Из рис. 3 видно, что в диапазоне давлений до 80 Па при любом постоянном значении тока разряда в диапазоне 15–25 мА увеличение давления вызывает резкое падение величины E/N. В области давлений выше 80 Па наблюдается менее резкое уменьшение величины приведенной напряженности электрического поля. Такой характер зависимости является типичным для электроотрицательных газов [10] и обусловлен тем, что на начальном этапе (20-80 Па) величина общей концентрации частиц N возрастает значительно

<i>P</i> , Па	Е, В/см (15 мА)	Е, В/см (25 мА)	N , 10^{15} cm ⁻³ (15 mA)	N , 10^{15} cm ⁻³ (25 mA)
20	15.58	16.88	4.61	4.49
40	19.48	21.56	9.09	8.78
60	23.90	23.64	13.45	12.93
80	25.71	26.23	17.70	16.81
100	26.75	31.95	21.91	20.42
120	28.31	35.84	26.05	23.92
140	29.87	41.30	30.19	27.16
160	30.91	42.34	34.29	30.55
180	33.25	45.71	38.31	33.87
200	34.55	47.79	42.30	37.12

Таблица 1. Влияние давления тетрафторметана на величины осевой напряженности электрического поля и общую концентрацию частиц

быстрее (табл. 1, \approx 4.5 раза на участке 20–80 Па для i=15-25 мА), чем напряженность поля E в плазме (табл. 1, \approx 1.7 раза на участке 20–80 Па для i=15-25 мА).

Ярко выраженная зависимость E/N = f(p) в области p = 20-160 Па указывает на диффузионный ($v_{\rm dif} > v_{\rm da}$) или переходный ($v_{\rm dif} \approx v_{\rm da}$) режимы разряда, где $v_{\rm dif}$ — частота диффузионной гибели электронов, а $v_{\rm da}$ — частота их диссоциативного прилипания к молекулам тетрафторметана. В обоих случаях, в качестве основного механизма, обусловливающего снижение E/N, следует рассматривать аналогичное изменение коэффициента диффузии и частоты диффузионной гибе-

ли электронов. Очевидно также, что уменьшение E/N по мере роста давления газа вызывает падение средней энергии электронов $\overline{\epsilon}$ (из-за увеличения частоты столкновений электронов с "тяжелыми" частицами и роста суммарных потерь энергии в неупругих процессах) и констант скоростей реакций под действием электронного удара, удовлетворяющих условию $\varepsilon_{th} \geq \overline{\epsilon}$, где ε_{th} — пороговая энергия. Отметим, что абсолютные значения E/N в плазме тетрафторметана ниже аналогичных величин для плазмы хлора ($E/N = 5.8 \times 10^{-15} \, \mathrm{B} \, \mathrm{cm}^2$ при $p = 40 \, \mathrm{\Pia} \, \mathrm{u} \, i = 20 \, \mathrm{mA}$) и хлористого водорода ($E/N = 3.7 \times 10^{-15} \, \mathrm{B} \, \mathrm{cm}^2$ при $p = 40 \, \mathrm{\Pia} \, \mathrm{u} \, i = 20 \, \mathrm{mA}$) в аналогичном диапазоне условий [11, 12]. В общем случае, это может быть связано с меньшей

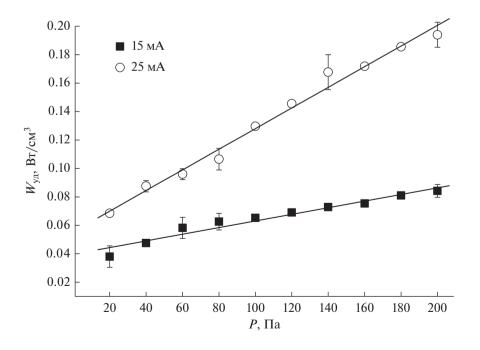
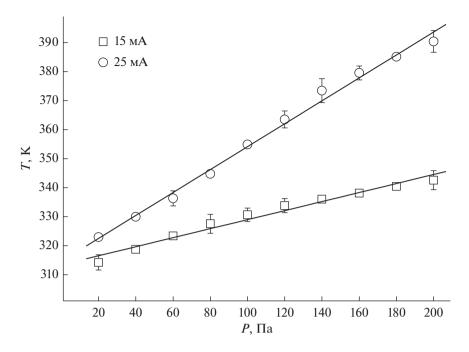



Рис. 1. Зависимость удельной мощности, вкладываемой в разряд, от давления тетрафторметана.

Рис. 2. Зависимости температуры газа T от давления тетрафторметана.

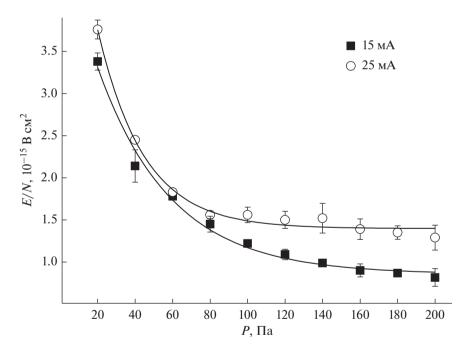
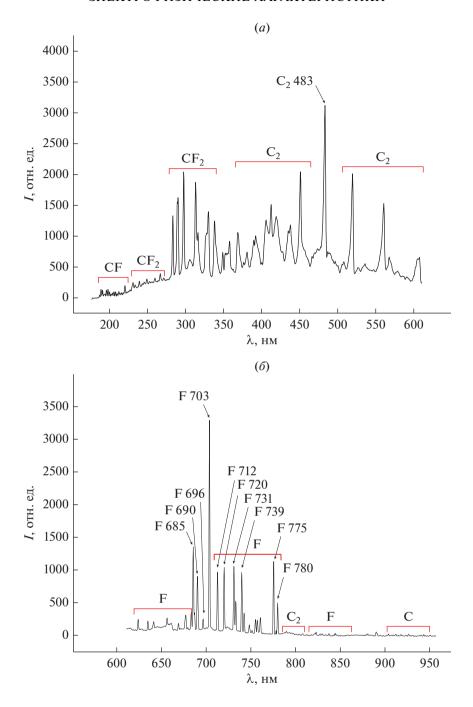


Рис. 3. Зависимость приведенной напряженности электрического поля от давления тетрафторметана.

эффективностью прилипания электронов к молекулам тетрафторметана.


Исследование эмиссионных спектров плазмы тетрафторметана показало наличие в них излучения как атомарных, так и молекулярных компонентов (рис. 4). Так, в спектрах были зафиксированы 3 группы линий атомарного фтора в диапазоне от 620 до 880 нм:

1. Первая группа линий атомарного фтора (620-680 нм) наиболее интенсивные:

• F 624.04 HM (
$$\varepsilon_{th} = 14.68 \ \Im B, {}^{4}S_{3/2}^{\circ} - {}^{4}P_{5/2}$$
);

• F 634.85 HM (
$$\varepsilon_{th} = 14.68 \ \ni B$$
, ${}^{4}S_{3/2}^{\circ} - {}^{4}P_{3/2}$);

• F 641.49 нм (
$$\epsilon_{th} = 14.68$$
 эВ, $^4S_{3/2}^{\circ} - ^4P_{1/2}$);

Рис. 4. Общий вид спектра излучения плазмы тетрафторметана ($p = 100 \, \text{Пa}$, $i = 25 \, \text{мA}$).

- F 656.37 нм (ε_{th} = 14.58 эB, $^2\mathrm{D}^\circ_{5/2}$ $^4\mathrm{P}_{5/2}$, непригодна для анализа, лежит на молекулярной полосе);
 - F 669.27 hm ($\epsilon_{th} = 14.58 \ {\rm 9B}, \ ^2{\rm D}^{\circ}_{5/2} {}^4{\rm P}_{3/2}$);
 - F 677.20 hm (ϵ_{th} = 14.52 ${}_{9}B$, ${}^{4}D_{5/2}^{\circ} {}^{4}P_{5/2}$).

Обладают относительно невысокой интенсивностью излучения, однако большинство из зафиксированных линий пригодны для анализа.

- 2. Вторая группа линий атомарного фтора (680—780 нм) наиболее интенсивные:
 - F 685.65 hm ($\varepsilon_{th} = 14.50 \ \vartheta B$, $^4D_{7/2}^{\circ} ^4P_{5/2}$);
 - F 690.55 HM ($\varepsilon_{th} = 14.52 \Im B$, ${}^{4}D_{5/2}^{\circ} {}^{4}P_{3/2}$);
 - F 703.84 HM ($\varepsilon_{th} = 14.74 \ \Im B, {}^{4}P_{3/2}^{\circ} {}^{2}P_{3/2}$);
 - F 712.75 HM ($\varepsilon_{th} = 14.76 \ \ni B, \ ^2P_{1/2}^{\circ} ^2P_{1/2}$);

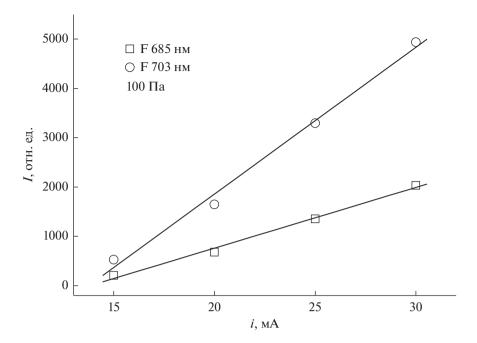


Рис. 5. Зависимости интенсивности излучения атомарных линий фтора от тока разряда.

• F 720.30 HM (
$$\varepsilon_{th} = 14.74 \ \Im B, ^2 P_{3/2}^{\circ} - ^2 P_{1/2}$$
);

• F 731.04 HM (
$$\varepsilon_{th} = 14.68 \ \Im B$$
, $^2S_{1/2}^{\circ} - ^2P_{3/2}$);

• F 739.86 HM (
$$\varepsilon_{th} = 14.37 \ \Im B, \ ^4P_{5/2}^{\circ} - ^4P_{5/2}$$
);

• F 775.68 hm (
$$\varepsilon_{th} = 14.58 \ \Im B$$
, $^2D^{\circ}_{5/2} - ^2P_{3/2}$);

• F 780.15 HM (
$$\varepsilon_{th} = 14.61 \ \mathrm{9B}, \ ^2\mathrm{D}_{3/2}^{\circ} - ^2\mathrm{P}_{1/2}$$
).

Обладают высокой интенсивностью излучения, все из зафиксированных линий пригодны для анализа.

3. Третья группа линий атомарного фтора (820-880 нм): слабоинтенсивные линии, непригодны для анализа.

Следующим обнаруженным атомарным представителем выступает углерод. В спектрах излучения были обнаружены две слабоинтенсивные группы линий атомарного углерода в областях 240—300 и 900—950 нм.

1. Первая группа линий атомарного углерода (240—300 нм), кроме наиболее интенсивной, непригодна для анализа:

• C 247.53 hm (
$$\epsilon_{th} = 7.68 \ \mathrm{9B}, \ ^1P_1^{\circ} - ^1S_0$$
).

2. Вторая группа линий атомарного углерода (900—950 нм), слабоинтенсивные линии, однако хорошо различимы и подходят для анализа, наиболее интенсивные:

• C 918.09 HM (
$$\varepsilon_{th} = 10.35 \ \text{эB}, \ ^{1}\text{D}_{2}^{\circ} - {}^{1}\text{D}_{2}$$
);

• C 940.63 hm (
$$\varepsilon_{th} = 9.00 \ \mathrm{9B}, \ ^1\mathrm{D}_2 - ^1\mathrm{P_l^\circ}$$
).

Далее рассмотрим молекулярные компоненты, зарегистрированные в спектрах излучения тетрафторметана. Было обнаружено излучение молекулярных полос CF_n (где n=1,2,3) и C_2 :

- 1. СF в интервале от 197 до 240 нм (наиболее интенсивные: 203.14, 204.99, 207.28, 209.35 и 219.69 нм). Слабоинтенсивные полосы, все за исключением полосы СF 209 нм, непригодны для анализа.
- 2. CF_2 в интервале от 252 до 330 нм (наиболее интенсивные: 252.75, 259.08, 263.17, 266.1, 270.77, 282.78, 289.43, 296.99, 305.11, 312.64, 329.68 нм). Интенсивные и хорошо различимые полосы, однако все "лежат" на большой молекулярной полосе, вследствие чего их анализ затруднен.
 - 3. CF₃ 607 нм.
 - 4. С₂ в интервалах 350-600 нм и 780-810 нм:
- Наиболее интенсивные: 368.12, 389.19, 391.75, 405.69, 412.12, 418.88, 435.18, 437.42, 450.84, (468.40, 471.50, 473.70 нм) полосы системы Свана, 483.04, 507.80, 512.90, 516.50, 519.28, 535.88, 547.00, 550.20, 554.00, 558.50, 560.44, 563.50, 567.44 и 607.47 нм. Интенсивные и хорошо различимые полосы, однако все "лежат" на большой молекулярной полосе, вследствие чего их анализ затруднен.
- Система полос Филипса (максимум на длине волны 790.12 нм). Слабоинтенсивные полосы, однако, могут использоваться при расчете температуры газа посредством спектральных методов (возможность отождествления вращательной температуры и температуры газа).

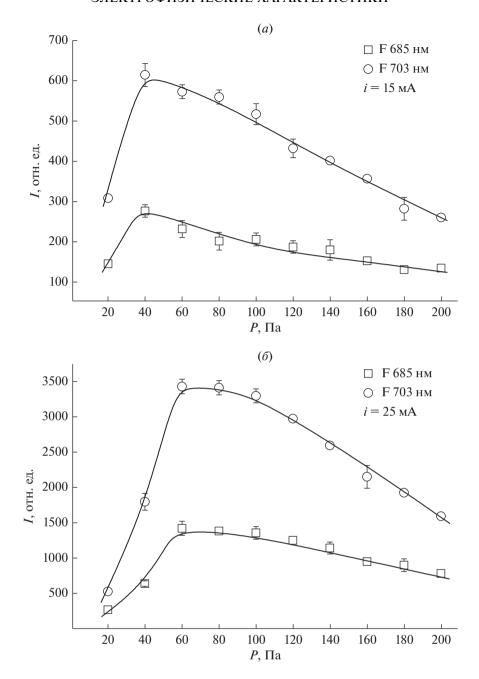


Рис. 6. Зависимости интенсивности излучения атомарных линий фтора от давления тетрафторметана.

Высокие значения энергий возбуждения (излучения) указанных выше излучающих состояний позволяют рассматривать возбуждение атомов и молекул электронным ударом как основной механизм заселения верхних состояний [9]. Кроме этого, низкие времена жизни соответствующих возбужденных состояний позволяют рассматривать излучательную дезактивацию как основной механизм данного процесса. В таком случае интенсивность излучения линий и полос может описываться выражением: $I = k n_e N$, где I — интенсивность

излучения; n_e — концентрация электронов; N — концентрация атомов или молекул газа; k — коэффициент скорости процесса. Выражение для нахождения коэффициента скорости процесса имеет вид: $k = \int_{E_a}^{\infty} \sigma(E) \, f(E) \, \sqrt{E} dE$, где f(E) — функция распределения электронов по энергиям, $\sigma(E)$ — зависимость сечения процесса от энергии электронов, E — энергия электронов, E_a — пороговая энергия возбуждения.

Для дальнейшего анализа были выбраны линии F 685.65 и F 703.84 нм, как наиболее интенсивные и не перекрывающиеся с другими линиями и полосами. Для выбранных линий, были получены зависимости интенсивностей излучения от тока разряда (рис. 5) и давления плазмообразующего газа (рис. 6). На графике зависимости интенсивности излучения от тока разряда (рис. 5) с ростом тока наблюдается линейное увеличение интенсивности излучения всех рассматриваемых линий, что соответствует механизму прямого возбуждения излучающих состояний при электронном ударе и свидетельствует об отсутствии вторичных процессов. Влияние электрофизических параметров плазмы на интенсивность излучения линий или полос определяется изменением концентраций частиц и коэффициента скорости процесса. Так, при увеличении тока разряда приведенная напряженность электрического поля, а следовательно, доля быстрых электронов в функции распределения электронов по энергиям и коэффициент скорости возбуждения несколько уменьшаются [13, 14], а концентрация тяжелых частиц растет, что приводит к пропорциональности интенсивности излучения концентрации электронов, т.е. току разряда.

Увеличение давления плазмообразующего газа (рис. 6) приводит к тому, что зависимости интенсивностей излучения атомов фтора на участке 40-60 Па проходят через максимум, далее монотонно спадают. Возможные причины такого поведения полученных экспериментальных зависимостей: 1) на начальном этапе до 60 Па рост концентрации частиц не компенсируется изменением условий возбуждения, характеризуемых параметром kn_e , где k = f(E/N) — константа скорости возбуждения, n_e — концентрация электронов; 2) после 60 Па изменение условий возбуждения начинает преобладать над увеличением концентрации частиц (возможно данный факт связан с тем, что частицы фтора начинают тратиться на образование СF-содержащих радикалов посредством атомно-молекулярных реакций, объемной рекомбинации или гетерогенного взаимодействия). В тоже время характер зависимостей I = f(i, p) не противоречит общим представлением о кинетике процессов образования и гибели активных частиц в молекулярных газах, где увеличение тока разряда или давления обычно сопровождается увеличением как скоростей диссоциации исходных молекул, так концентраций продуктов диссоциации.

ЗАКЛЮЧЕНИЕ

Проведены измерения электрофизических характеристик плазмы тетрафторметана в зависимости от внешних параметров разряда в широком диапазоне условий. Показано, что величина тем-

пературы газа линейно возрастает с ростом давления газа и тока разряда. Поведение приведенной напряженности электрического поля типично для электроотрицательных газов. Получены и проанализированы эмиссионные спектры плазмы тетрафторметана. Показано, что излучение плазмы представлено атомарными и молекулярными компонентами, а зависимости интенсивностей линий и полос от внешних условий разряда определяются возбуждением излучающих состояний прямым электронным ударом. Данные по эмиссионной спектроскопии могут быть использованы для контроля состава плазмы.

Работа выполнена в рамках государственного задания на выполнение НИР. Тема № FZZW-2020-0009.

СПИСОК ЛИТЕРАТУРЫ

- 1. Данилин Б.С., Киреев В.Ю. Применение низкотемпературной плазмы для травления и очистки материалов / Под ред. Данилин Б.С. М.: Энергоатомиздат, 1987. 264 с.
- 2. *Светцов В.И., Ефремов А.М.* Вакуумная и плазменная электроника: учеб. пособие. Иван. гос. хим.технол. ун-т. Иваново, 2003. 171 с.
- 3. *Лебедев Ю.А*. Методы контактной диагностики в неравновесной плазмохимии. М.: Наука, 1981. 142 с.
- 4. *Рохлин Г.Н.* Разрядные источники света. Изд. 2-е; перераб. и доп. М.: Энергатомиздат, 1991. 720 с.
- Мурин Д.Б., Дунаев А.В. Электрофизические параметры и спектры излучения плазмы трихлорида бора // Микроэлектроника. 2018. Т. 47. № 2. С. 106—114.
- Куприяновская А.П., Светцов В.И., Ситанов Д.В.
 Влияние условий разряда и температуры стенки на
 электрические характеристики и излучение положительного столба тлеющего разряда в хлоре //
 Черкассы, 1990. Деп. в ВИНИТИ. № 59. С. 93.
- 7. *Ефремов А.М.*, *Пивоваренок С.А.*, *Светцов В.И.* Параметры плазмы и механизмы травления металлов и полупроводников в хлороводороде // Микроэлектроника. 2009. Т. 38. № 3. С. 147—159.
- 8. Пирс Р., Гейдон А. Отождествление молекулярных спектров. М.: Изд. иностр. лит., 1949. 540 с.
- 9. Свентицкий А.Р., Стриганов Н.С. Таблицы спектральных линий нейтральных и ионизованных атомов. М.: Атомиздат, 1966. 900 с.
- 10. Ефремов А.М., Мурин Д.Б. Электрофизические параметры плазмы бинарных смесей HCl + Ar, He, H₂, O₂ и Cl₂ // Известия высших учебных заведений. серия: химия и химическая технология. 2021. Т. 58, \mathbb{N} 4, C. 14—18.
- 11. *Пивоваренок С.А., Мурин Д.Б., Ситанов Д.В.* Влияние состава смеси на электрофизические параметры и спектры излучения плазмы хлороводорода с хлором и гелием // Микроэлектроника. 2021. Т. 50. № 1. С. 43—48.

- 12. Пивоваренок С.А., Дунаев А.В., Мурин Д.Б., Ефремов А.М., Светцов В.И. Электрофизические параметры и эмиссионные спектры плазмы тлеющего разряда в хлористом водороде // Известия высших учебных заведений. Серия: Химия и химическая технология. 2011. Т. 54. № 9. С. 48—52.
- 13. Мурин Д.Б., Ефремов А.М., Светцов В.И., Пивоваренок С.А., Овцын А.А., Шабадаров С.С. Интенсивности излучения и концентрации активных частиц в плазме тлеющего разряда в смесях хлористого во-
- дорода с аргоном и гелием // Известия высших учебных заведений. Серия: Химия и химическая технология. 2013. Т. 56. № 4. С. 29–32.
- 14. Мурин Д.Б., Ефремов А.М., Светцов В.И., Пивоваренок С.А., Годнев Е.М. Интенсивности излучения и концентрации нейтральных частиц в плазме тлеющего разряда постоянного тока в смесях $HCl-H_2$ и $HCl-O_2$ // Известия высших учебных заведений. Серия: Химия и химическая технология. 2013. Т. 56. № 8. С. 41–44.