Reassortant strains of Rotavirus A (Sedoreoviridae: Rotavirus: Rotavirus A): the role of animal rotaviruses in the emergence of new human rotavirus variants

封面

如何引用文章

全文:

详细

Animal rotaviruses (RV) play a significant role in the formation of new variants of epidemiologically significant human group A rotavirus (RVA) strains.A reassortant variant of genotype G3P[8] which has been shown to originate from RV in horses and cattle currently dominates on the territory of the Russian Federation. In addition, reassortant RV variants of genotypes G3P[3], G3P[9], G6P[9], similar to RV of cats and dogs, have been sporadically identified in the world for a long time. Given the relevance of this topic, a detailed study of the AU-1-like genetic group of RVAs, whose representatives are closely related to animal RVs, particularly those found in cats and dogs, is of scientific and practical interest.

The aim of this review is to analyze published scientific data on human, feline and canine RV that belong to the AU-1-like genetic group and have been studied based on their complete genotypes.

作者简介

Elena Velikzhanina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor); Lobachevsky State University of Nizhny Novgorod

编辑信件的主要联系方式.
Email: www.e_velikzhanina@mail.ru
ORCID iD: 0000-0003-4069-1427

Junior Researcher, laboratory of molecular epidemiology of viral infections

俄罗斯联邦, 603950, Nizhny Novgorod; 603022, Nizhny Novgorod

Tatiana Sashina

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: tatyana.sashina@gmail.com
ORCID iD: 0000-0003-3203-7863

PhD, Senior Researcher, laboratory of molecular epidemiology of viral infections

俄罗斯联邦, 603950, Nizhny Novgorod

Nadezhda Novikova

Academician I.N. Blokhina Nizhny Novgorod Scientific Research Institute of Epidemiology and Microbiology of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)

Email: novikova_na@mail.ru
ORCID iD: 0000-0002-3710-6648

Dr. Sci., Professor, Leading Researcher, Head of the laboratory of molecular epidemiology of viral infections

俄罗斯联邦, 603950, Nizhny Novgorod

参考

  1. Estes M.K., Kapikian A.Z. Rotaviruses. In: Fields B.N., Knipe D.M., Howley P.M., eds. Fields’ Virology. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2007: 1917–73.
  2. Palombo E.A. Genetic analysis of Group A rotaviruses: evidence for interspecies transmission of rotavirus genes. Virus Genes. 2002; 24(1): 11–20. https://doi.org/10.1023/a:1014073618253
  3. KU Leuven. Rotavirus classification working group: RCWG; 2024. Available at: https://rega.kuleuven.be/cev/viralmetagenomics/virus-classification/rcwg
  4. Matthijnssens J., Heylen E., Zeller M., Rahman M., Lemey P., Van Ranst M. Phylodynamic analyses of rotavirus genotypes G9 and G12 underscore their potential for swift global spread. Mol. Biol. Evol. 2010; 27(10): 2431–6. https://doi.org/10.1093/molbev/msq137
  5. Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Predominance of new G9P[8] rotaviruses closely related to Turkish strains in Nizhny Novgorod (Russia). Arch. Virol. 2017; 162(8): 2387–92. https://doi.org/10.1007/s00705-017-3364-7
  6. Martella V., Bányai K., Matthijnssens J., Buonavoglia C., Ciarlet M. Zoonotic aspects of rotaviruses. Vet. Microbiol. 2010; 140(3-4): 246–55. https://doi.org/10.1016/j.vetmic.2009.08.028
  7. Martella V., Ciarlet M., Camarda A., Pratelli A., Tempesta M., Greco G., et al. Molecular characterization of the VP4, VP6, VP7, and NSP4 genes of lapine rotaviruses identified in Italy: emergence of a novel VP4 genotype. Virology. 2003; 314(1): 358–70. https://doi.org/10.1016/s0042-6822(03)00418-5
  8. Wang Y.H., Pang B.B., Zhou X., Ghosh S., Tang W.F., Peng J.S. et al. Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation. Infect. Genet. Evol. 2013; 16: 103–12. https://doi.org/10.1016/j.meegid.2013.01.016
  9. Nakagomi O., Nakagomi T., Oyamada H., Suto T. Relative frequency of human rotavirus subgroups 1 and 2 in Japanese children with acute gastroenteritis. J. Med. Virol. 1985; 17(1): 29–34. https://doi.org/10.1002/jmv.1890170105
  10. Matthijnssens J., Ciarlet M., Rahman M., Attoui H., Bányai K., Estes M.K., et al. Recommendations for the classification of group A rotaviruses using all 11 genomic RNA segments. Arch. Virol. 2008; 153(8): 1621–9. https://doi.org/10.1007/s00705-008-0155-1
  11. Iturriza Gómara M., Wong C., Blome S., Desselberger U., Gray J. Molecular characterization of VP6 genes of human rotavirus isolates: correlation of genogroups with subgroups and evidence of independent segregation. J. Virol. 2002; 76(13): 6596–601. https://doi.org/10.1128/jvi.76.13.6596-6601.2002
  12. Nakagomi O., Nakagomi T., Akatani K., Ikegami N. Identification of rotavirus genogroups by RNA-RNA hybridization. Mol. Cell. Probes. 1989; 3(3): 251–61. https://doi.org/10.1016/0890-8508(89)90006-6
  13. Heiman E.M., McDonald S.M., Barro M., Taraporewala Z.F., Bar-Magen T., Patton J.T. Group a human rotavirus genomics: evidence that gene constellations are influenced by viral protein interactions. J. Virol. 2008; 82(22): 11106–16. https://doi.org/10.1128/JVI.01402-08
  14. Uprety T., Wang D., Li F. Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch. Virol. 2021; 166(9): 2369–86. https://doi.org/10.1007/s00705-021-05142-7
  15. Novikova N.A., Ponomareva N.V., Novikov D.V., Prilipov A.G., Yepifanova N.V., Golitsyna L.N. Nucleotide sequence analysis of the NSP4 gene from group a rotavirus-es isolated in Nizhni Novgorod. Voprosy virusologii. 2008; 53(6): 35–9. https://elibrary.ru/kaxfub (In Russia)
  16. Komoto S., Tacharoenmuang R., Guntapong R., Ide T., Tsuji T., Yoshikawa T., et al. Reassortment of human and animal rotavirus gene segments in emerging DS-1-Like G1P[8] rotavirus strains. PLoS One. 2016; 11(2): e0148416. https://doi.org/10.1371/journal.pone.0148416
  17. Morozova O.V., Sashina T.A., Epifanova N.V., Velikzhanina E.I., Novikova N.A. Phylodynamic characteristics of reassortant DS-1-like G3P[8]-strains of rotavirus type A isolated in Nizhny Novgorod (Russia). Braz. J. Microbiol. 2023; 54(4): 2867–77. https://doi.org/10.1007/s42770-023-01155-3
  18. Nakagomi T., Nakagomi O. RNA-RNA hybridization identifies a human rotavirus that is genetically related to feline rotavirus. J. Virol. 1989; 63(3): 1431–4. https://doi.org/10.1128/JVI.63.3.1431-1434.1989
  19. Flores J., Perez-Schael I., Boeggeman E., White L., Perez M., Purcell R., et al. Genetic relatedness among human rotaviruses. J. Med. Virol. 1985; 17(2): 135–43. https://doi.org/10.1002/jmv.1890170206
  20. Espejo R.T., Calderón E., González N., Salomon A., Martuscelli A., Romero P. Presence of two distinct types of rotavirus in infants and young children hospitalized with acute gastroenteritis in Mexico City, 1977. J. Infect. Dis. 1979; 139(4): 474–7. https://doi.org/10.1093/infdis/139.4.474
  21. Greenberg H., McAuliffe V., Valdesuso J., Wyatt R., Flores J., Kalica A., et al. Serological analysis of the subgroup protein of rotavirus, using monoclonal antibodies. Infect. Immun. 1983; 39(1): 91–9. https://doi.org/10.1128/iai.39.1.91-99.1983
  22. Urasawa S., Urasawa T., Taniguchi K. Genetic reassortment between two human rotaviruses having different serotype and subgroup specificities. J. Gen. Virol. 1986; 67(Pt. 8): 1551–9. https://doi.org/10.1099/0022-1317-67-8-1551
  23. Nakagomi T., Katsushima N., Nakagomi O. Relative frequency of human rotavirus subgroups I and II in relation to “short” and “long” electropherotypes of viral RNA. Ann. Inst. Pasteur Virol. 1988; 139(3): 295–300. https://doi.org/10.1016/s0769-2617(88)80043-1
  24. Nakagomi O., Isegawa Y., Ueda S., Gerna G., Sarasini A., Kaga E., et al. Nucleotide sequence comparison of the VP8* gene of rotaviruses possessing the AU-1 gene 4 allele. J. Gen. Virol. 1993; 74(Pt. 8): 1709–13. https://doi.org/10.1099/0022-1317-74-8-1709
  25. Nakagomi O., Nakagomi T. Genetic diversity and similarity among mammalian rotaviruses in relation to interspecies transmission of rotavirus. Arch. Virol. 1991; 120(1-2): 43–55. https://doi.org/10.1007/BF01310948
  26. Matthijnssens J., Van Ranst M. Genotype constellation and evolution of group A rotaviruses infecting humans. Curr. Opin. Virol. 2012; 2(4): 426–33. https://doi.org/10.1016/j.coviro.2012.04.007
  27. Gauchan P., Sasaki E., Nakagomi T., Do L.P., Doan Y.H., Mochizuki M., et al. Whole genotype constellation of prototype feline rotavirus strains FRV-1 and FRV64 and their phylogenetic relationships with feline-like human rotavirus strains. J. Gen. Virol. 2015; 96(Pt. 2): 338–50. https://doi.org/10.1099/vir.0.070771-0
  28. Mochizuki M., Nakagomi O., Shibata S. Hemagglutinin activity of two distinct genogroups of feline and canine rotavirus strains. Arch. Virol. 1992; 122(3-4): 373–81. https://doi.org/10.1007/BF01317199
  29. De Grazia S., Giammanco G.M., Potgieter C.A., Matthijnssens J., Banyai K., Platia M.A., et al. Unusual assortment of segments in 2 rare human rotavirus genomes. Emerg. Infect. Dis. 2010; 16(5): 859–62. https://doi.org/10.3201/eid1605.091826
  30. Martella V.A., Potgieter C., Lorusso E., De Grazia S., Giammanco G.M., Matthijnssens J., et al. A feline rotavirus G3P[9] carries traces of multiple reassortment events and resembles rare human G3P[9] rotaviruses. J. Gen. Virol. 2011; 92(Pt. 5): 1214–21. https://doi.org/10.1099/vir.0.027425-0
  31. Wang Y.H., Pang B.B., Zhou X., Ghosh S., Tang W.F., Peng J.S., et al. Complex evolutionary patterns of two rare human G3P[9] rotavirus strains possessing a feline/canine-like H6 genotype on an AU-1-like genotype constellation. Infect. Genet. Evol. 2013; 16: 103–12. https://doi.org/10.1016/j.meegid.2013.01.016
  32. Theamboonlers A., Maiklang O., Thongmee T., Chieochansin T., Vuthitanachot V., Poovorawan Y. Complete genome analysis of a rare human G3P[9] rotavirus posing as an AU-1 like strain. Springerplus. 2013; 2: 569. https://doi.org/10.1186/2193-1801-2-569
  33. Nguyen T.H., Than V.T., Thanh H.D., Kim W. Evidence of multiple reassortment events of feline-to-human rotaviruses based on a rare human G3P[9] rotavirus isolated from a patient with acute gastroenteritis. Comp. Immunol. Microbiol. Infect. Dis. 2016; 46: 53–9. https://doi.org/10.1016/j.cimid.2016.04.003
  34. Fukuda Y., Kaoru A., Megumi H., Yuji Y., Shuhei A., Saho H., et al. Sequence analysis of a feline- and porcine-origin G3P[9] rotavirus A strain in a child with acute gastroenteritis in Japan. Arch. Virol. 2023; 168(2): 45. https://doi.org/10.1007/s00705-022-05685-3
  35. Martella V., Pratelli A., Greco G., Gentile M., Fiorente P., Tempesta M., et al. Nucleotide sequence variation of the VP7 gene of two G3-type rotaviruses isolated from dogs. Virus Res. 2001; 74(1-2): 17–25. https://doi.org/10.1016/s0168-1702(00)00230-6
  36. Lee J.B., Youn S.J., Nakagomi T., Park S.Y., Kim T.J., Song C.S., et al. Isolation, serologic and molecular characterization of the first G3 caprine rotavirus. Arch. Virol. 2003; 148(4): 643–57. https://doi.org/10.1007/s00705-002-0963-7
  37. Matthijnssens J., De Grazia S., Piessens J., Heylen E., Zeller M., Giammanco G.M., et al. Multiple reassortment and interspecies transmission events contribute to the diversity of feline, canine and feline/canine-like human group A rotavirus strains. Infect. Genet. Evol. 2011; 11(6): 1396–406. https://doi.org/10.1016/j.meegid.2011.05.007
  38. Miño S., Matthijnssens J., Badaracco A., Garaicoechea L., Zeller M., Heylen E., et al. Equine G3P[3] rotavirus strain E3198 related to simian RRV and feline/canine-like rotaviruses based on complete genome analyses. Vet. Microbiol. 2013; 161(3-4): 239–46. https://doi.org/10.1016/j.vetmic.2012.07.033
  39. He B., Yang F., Yang W., Zhang Y., Feng Y., Zhou J., et al. Characterization of a novel G3P[3] rotavirus isolated from a lesser horseshoe bat: a distant relative of feline/canine rotaviruses. J. Virol. 2013; 87(22): 12357–66. https://doi.org/10.1128/JVI.02013-13
  40. Papp H., Mihalov-Kovács E., Dóró R., Marton S., Farkas S.L., Giammanco G.M., et al. Full-genome sequencing of a Hungarian canine G3P[3] Rotavirus A strain reveals high genetic relatedness with a historic Italian human strain. Virus Genes. 2015; 50(2): 310–5. https://doi.org/10.1007/s11262-014-1163-8
  41. Dong H., Qian Y., Nong Y., Zhang Y., Mo Z., Li R. Genomic characterization of an unusual human G3P[3] rotavirus with multiple cross-species reassortment. Bing Du Xue Bao. 2016; 32(2): 129–40. (in Chinese)
  42. Sasaki M., Orba Y., Sasaki S., Gonzalez G., Ishii A., Hang’ombe B.M., et al. Multi-reassortant G3P[3] group A rotavirus in a horseshoe bat in Zambia. J. Gen. Virol. 2016; 97(10): 2488–93. https://doi.org/10.1099/jgv.0.000591
  43. Okitsu S., Hikita T., Thongprachum A., Khamrin P., Takanashi S., Hayakawa S., et al. Detection and molecular characterization of two rare G8P[14] and G3P[3] rotavirus strains collected from children with acute gastroenteritis in Japan. Infect. Genet. Evol. 2018; 62: 95–108. https://doi.org/10.1016/j.meegid.2018.04.011
  44. Nakagomi T., Agbemabiese C.A., Nakagomi O. Full genotype constellations of six feline Rotavirus A strains isolated in Japan in the 1990s including a rare A15 NSP1 genotype. Arch. Virol. 2018; 163(8): 2257–60. https://doi.org/10.1007/s00705-018-3835-5
  45. Charoenkul K., Janetanakit T., Bunpapong N., Boonyapisitsopa S., Tangwangvivat R., Suwannakarn K., et al. Molecular characterization identifies intra-host recombination and zoonotic potential of canine rotavirus among dogs from Thailand. Transbound. Emerg. Dis. 2021; 68(3): 1240–52. https://doi.org/10.1111/tbed.13778
  46. Azevedo L.S., Costa F.F., Ghani M.B.A., Viana E., França Y., Medeiros R.S., et al. Full genotype characterization of Brazilian canine G3P[3] strains during a 10-year survey (2012-2021) of rotavirus infection in domestic dogs and cats. Arch. Virol. 2023; 168(7): 176. https://doi.org/10.1007/s00705-023-05807-5
  47. Chamsai E., Charoenkul K., Udom K., Jairak W., Chaiyawong S., Amonsin A. Genetic characterization and evidence for multiple reassortments of rotavirus A G3P[3] in dogs and cats in Thailand. Front. Vet. Sci. 2024; 11: 1415771. https://doi.org/10.3389/fvets.2024.1415771
  48. Bányai K., Martella V., Molnár P., Mihály I., Van Ranst M., Matthijnssens J. Genetic heterogeneity in human G6P[14] rotavirus strains detected in Hungary suggests independent zoonotic origin. J. Infect. 2009; 59(3): 213–5. https://doi.org/10.1016/j.jinf.2009.06.009
  49. Nordgren J., Nitiema L.W., Sharma S., Ouermi D., Traore A.S., Simpore J., et al. Emergence of unusual G6P[6] rotaviruses in children, Burkina Faso, 2009-2010. Emerg. Infect. Dis. 2012; 18(4): 589–97. https://doi.org/10.3201/eid1804.110973
  50. Ndze V.N., Esona M.D., Achidi E.A., Gonsu K.H., Doro R., Marton S., et al. Full genome characterization of human Rotavirus A strains isolated in Cameroon, 2010-2011: diverse combinations of the G and P genes and lack of reassortment of the backbone genes. Infect. Genet. Evol. 2014; 28: 537–60. https://doi.org/10.1016/j.meegid.2014.10.009
  51. Ben Hadj Fredj M., Heylen E., Zeller M., Fodha I., Benhamida-Rebai M., Van Ranst M., et al. Feline origin of rotavirus strain, Tunisia, 2008. Emerg. Infect. Dis. 2013; 19(4): 630–4. https://doi.org/10.3201/eid1904.121383
  52. Mijatovic-Rustempasic S., Roy S., Sturgeon M., Rungsrisuriyachai K., Esona M.D., Degroat D., et al. Full-genome sequence of a rare human G3P[9] rotavirus strain. Genome Announc. 2014; 2(2): e00143-14. https://doi.org/10.1128/genomeA.00143-14
  53. Jeong S., Than VT.., Lim I., Kim W. Whole-genome analysis of a rare human Korean G3P[9] rotavirus strain suggests a complex evolutionary origin potentially in evolving reassortment events between feline and bovine rotaviruses. PLoS One. 2014; 9(5): e97127. https://doi.org/10.1371/journal.pone.0097127
  54. Lestari F.B., Chandranoi K., Chuchaona W., Vongpunsawad S., Poovorawan Y. A G3P[9] rotavirus strain with an unusual genome constellation in a diarrheic cat in Thailand. Arch. Virol. 2023; 168(1): 24. https://doi.org/10.1007/s00705-022-05641-1
  55. Fukuda Y., Kusuhara H., Takai-Todaka R., Haga K., Katayama K., Tsugawa T. Human transmission and outbreaks of feline-like G6 rotavirus revealed with whole-genome analysis of G6P[9] feline rotavirus. J. Med. Virol. 2024; 96(4): e29565. https://doi.org/10.1002/jmv.29565
  56. Pietsch C., Liebert U.G. Evidence for presumable feline origin of sporadic G6P[9] rotaviruses in humans. Infect. Genet. Evol. 2018; 63: 180–94. https://doi.org/10.1016/j.meegid.2018.05.030
  57. State report «On the state of sanitary and epidemiological welfare of the population in the Russian Federation in 2017». Moscow; 2018. (in Russian)
  58. Kiseleva V., Faizuloev E., Meskina E., Marova A., Oksanich A., Samartseva T., et al. Molecular-genetic characterization of human rotavirus A strains circulating in Moscow, Russia (2009–2014). Virol. Sin. 2018; 33(4): 304–13. https://doi.org/10.1007/s12250-018-0043-0
  59. Zhirakovskaya E.V., Tikunov A.Y., Kurilshchikov A.M., Tikunova N.V., Aksanova R.K., Sokolov S.N., et al. Genetic diversity of group A rotavirus isolates found in Western Siberia in 2007–2011. Molekulyarnaya genetika, mikrobiologiya i virusologiya. 2012; 27(4): 174–83. https://doi.org/10.3103/S0891416812040076 https://elibrary.ru/rgcgdz
  60. Sashina T.A., Velikzhanina E.I., Morozova O.V., Epifanova N.V., Novikova N.A. Detection and full-genotype characterization of rare and reassortant rotavirus A strains in Nizhny Novgorod, European part of Russia. Arch. Virol. 2023; 168(8): 215. https://doi.org/10.1007/s00705-023-05838-y
  61. Velikzhanina E.I., Sashina T.A., Morozova O.V., Epifanova N.V., Novikova N.A. Variability of genes encoding nonstructural proteins of rotavirus А (Reoviridae: Rotavirus: Rotavirus A) genotype G9P[8] during the period of dominance in the territory of Nizhny Novgorod (central part of Russia) (2011–2020). Voprosy virusologii. 2022; 67(6): 475–86. https://doi.org/10.36233/0507-4088-143 https://elibrary.ru/oeuvma (in Russian)

补充文件

附件文件
动作
1. JATS XML

版权所有 © Velikzhanina E.I., Sashina T.A., Novikova N.A., 2025

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».