Prospects for using low-dose radiation in the complex therapy for COVID-19

Cover Page

Cite item

Full Text

Abstract

This review presents the literature data of new approaches for the treatment of COVID-19 with low doses of radiation (LDR). In addition, data on the use of LDR for the treatment of various disorders, in particular pneumonia, a number of inflammatory processes of various etiology, as well as Alzheimer’s disease are discussed. The mechanisms of LDR action are briefly described, associated with the activation of the immune system and antiinflammatory response due to the effect on the processes of oxidative stress, which is reflected in an increase in the activity of cytokines (interleukin- (IL-) 6), changes in the expression of a number of genes (such as P53 and NF-κB (p65)) and long non-coding RNAs (ncRNAs) (the authors’ own data are presented). Based on the analysis of the material presented, it can be assumed that further clinical trials of the effect of MDR (5–10 cGy) on patients with COVID-19, who are at different stages of the disease, will reveal the optimal conditions for the development and use of an effective treatment regimen.

About the authors

D. V. Saleeva

FSBI «State Research Center – Burnasyan Federal Medical Biophysical Center» of Federal Medical Biological Agency of Russia

Author for correspondence.
Email: dasha_saleeva@inbox.ru
ORCID iD: 0000-0002-5870-5594

Daria V. Saleeva, Junior Researcher of the Laboratory of Molecular Biology and Genetics of Radiation Effects.

123098, Moscow, Russia

Russian Federation

G. D. Zasukhina

FSBI «State Research Center – Burnasyan Federal Medical Biophysical Center» of Federal Medical Biological Agency of Russia; FSBIS Vavilov Institute of General Genetics of Russian Academy of Sciences

Email: fake@neicon.ru
ORCID iD: 0000-0002-9871-0902

123098, Moscow, Russia

119991, Moscow, Russia

Russian Federation

References

  1. Barsoumian H.B., Ramapriyan R., Younes A.I., Caetano M.S., Menon H., Comeaux N.I., et al. Low-dose radiation treatment enhances systemic antitumor immune responses by overcoming the inhibitory stroma. J. Immunother. Cancer. 2020; 8(2): e000537. https://doi.org/10.1136/jitc-2020-000537
  2. Михайлов В.Ф., Засухина Г.Д. Новый подход к стимуляции защитных систем организма малыми дозами радиации. Успехи современной биологии. 2020; 140(3): 244–52. https://doi.org/10.31857/S0042132420030060
  3. Koosha F., Pourbagheri-Sigaroodi A., Bakhshandeh M., Bashash D. Low-dose radiotherapy (LD-RT) for COVID-19-induced pneumopathy: a worth considering approach. Int. J. Radiat. Biol. 2021; 97(3): 302–12. https://doi.org/10.1080/09553002.2021.1864049
  4. Koukourakis M.I. Low-dose radiotherapy for late-stage COVID-19 pneumonia? Dose Response. 2020; 18(3): 1559325820951357. https://doi.org/10.1177/1559325820951357
  5. Schofield P.N., Kondratowicz M. Evolving paradigms for the biological response to low dose ionizing radiation; the role of epigenetics. Int. J. Radiat. Biol. 2018; 94(8): 769–81. https://doi.org/10.1080/09553002.2017.1388548
  6. Guo T., Zou L., Ni J., Chu X., Zhu Z. Radiotherapy for unresectable locally advanced non-small cell lung cancer: a narrative review of the current landscape and future prospects in the era of immunotherapy. Transl. Lung Cancer Res. 2020; 9(5): 2097–112. https://doi.org/10.21037/tlcr-20-511
  7. Vaiserman A., Cuttler J.M., Socol Y. Low-dose ionizing radiation as a hormetin: experimental observations and therapeutic perspective for age-related disorders. Biogerontology. 2021; 22(2): 145–64. https://doi.org/10.1007/s10522-020-09908-5
  8. Ильин Л.А., Коренков И.П., Наркевич Б.Я. Радиационная гигиена. М.: ГЭОТАР-Медиа; 2017.
  9. Musser J.H., Edsall D.L. A study of metabolism in leukemia, under the influence of the x-ray. Tr. A. Am. Physicians. 1905; 20: 294–323.
  10. Calabrese E.J., Dhawan G. How radiotherapy was historically used to treat pneumonia: could it be useful today? Yale J. Biol. Med. 2013; 86(4): 555–70.
  11. Kirkby C., Mackenzie M. Low dose lung radiation therapy for pneumonia: an examination of historical dose distributions. Phys. Med. Biol. 2020; 65(15): 155019. https://doi.org/10.1088/1361-6560/ab9e55
  12. Bevelacqua J.J., Mortazavi S.M.J. Alzheimer’s disease: possible mechanisms behind neurohormesis induced by exposure to low doses of ionizing radiation. J. Biomed. Phys. Eng. 2018; 8(2): 153–6.
  13. Wen C., Su S., Tang Y., Li R., Xu H., Chen H., et al. IL-2 and IL- 2R gene polymorphisms and immune function in people residing in areas with high background radiation, Yangjiang, China. Int. J. Radiat. Biol. 2020; 96(11): 1466–72. https://doi.org/10.1080/09553002.2020.1820607
  14. Algara M., Arenas M., Marin J., Vallverdu I., Fernandez-Letón P., Villar J., et al. Low dose anti-inflammatory radiotherapy for the treatment of pneumonia by covid-19: A proposal for a multi-centric prospective trial. Clin. Transl. Radiat. Oncol. 2020; 24: 29–33. https://doi.org/10.1016/j.ctro.2020.06.005
  15. Pandey B.N. Low-dose radiation therapy for coronavirus disease- 2019 pneumonia: Is it time to look beyond apprehensions? Ann. Thorac. Med. 2020; 15(4): 199–207. https://doi.org/10.4103/atm.ATM_433_20
  16. Trinitat G.H., Romero-Expósito M., Sánchez-Nieto B. Low dose radiation therapy for COVID-19: Effective dose and estimation of cancer risk. Radiother. Oncol. 2020; 153: 289–95. https://doi.org/10.1016/j.radonc.2020.09.051
  17. Hess C.B., Buchwald Z.S., Stokes W., Nasti T.H., Switchenko J.M., Weinberg B.D., et al. Low-dose whole-lung radiation for COVID-19 pneumonia: Planned day 7 interim analysis of a registered clinical trial. Cancer. 2020; 126(23): 5109–13. https://doi.org/10.1002/cncr.33130
  18. Mezhir J.J., Advani S.J., Smith K.D., Darga T.E., Poon A.P., Schmidt H., et al. Ionizing radiation activates late herpes simplex virus 1 promoters via the p38 pathway in tumors treated with oncolytic viruses. Cancer Res. 2005; 65(20): 9479–84. https://doi.org/10.1158/0008-5472.CAN-05-1927
  19. Dhawan G., Kapoor R., Dhawan R., Singh R., Monga B., Giordano J., et al. Low dose radiation therapy as a potential life saving treatment for COVID-19-induced acute respiratory distress syndrome (ARDS). Radiother. Oncol. 2020; 147: 212–6. https://doi.org/10.1016/j.radonc.2020.05.002
  20. Gao H., Zhuo D., Xinkou G., Juancong D., Yuyu Z., Wei W., et al. Effects of various radiation doses on induced T-helper cell differentiation and related cytokine secretion. J. Radiat. Res. 2018; 59(4): 395–403. https://doi.org/10.1093/jrr/rry011
  21. Shin E., Lee S., Kang H., Kim J., Kim K., Youn H., et al. Organ-specific effects of low dose radiation exposure: a comprehensive review. Front. Genet. 2020; 11: 566244. https://doi.org/10.3389/fgene.2020.566244
  22. Shimura N., Kojima S. The lowest radiation dose having molecular changes in the living body. Dose Response. 2018; 16(2): 1559325818777326. https://doi.org/10.1177/1559325818777326
  23. Yang G., Yu D., Li W., Zhao Y., Wen X., Liang X., et al. Distinct biological effects of low-dose radiation on normal and cancerous human lung cells are mediated by ATM signaling. Oncotarget. 2016; 7(44): 71856–72. https://doi.org/10.18632/oncotarget.12379
  24. Шуленина Л.В., Михайлов В.Ф., Засухина Г.Д. Длинные некодирующие РНК в радиоответе. Радиационная биология. Радиоэкология. 2020; 60(3): 239–48. https://doi.org/10.31857/S0869803120030133
  25. Михайлов В.Ф., Шуленина Л.В., Раева Н.Ф., Васильева И.М., Салеева Д.В., Незнанова М.В., и др. Влияние малых доз ионизирующей радиации на экспрессию генов и некодирующих РНК в нормальных и злокачественных клетках человека. Цитология. 2019; 61(6): 427–38. https://doi.org/10.1134/S0041377119060051
  26. Chen Y., Cui J., Gong Y., Wei S., Wei Y., Yi L. MicroRNA: a novel implication for damage and protection against ionizing radiation. Environ. Sci. Poll. Res. Int. 2021; 28(13): 15584–96. https://doi.org/10.1007/s11356-021-12509-5
  27. Aryankalayil M.J., Chopra S., Levin J., Eke I., Makinde A., Das S., et al. Radiation-induced long noncoding RNAs in a mouse model after whole-body irradiation. Radiat. Res. 2018; 189(3): 251–63. https://doi.org/10.1667/RR14891.1
  28. Jangiam W., Udomtanakunchai C., Reungpatthanaphong P., Tungjai M., Honikel L., Gordon C., et al. Late effects of low-dose radiation on the bone marrow, lung, and testis collected from the same exposed BALB/cJ mice. Dose Response. 2018; 16(4): 1559325818815031. https://doi.org/10.1177/1559325818815031

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Saleeva D.V., Zasukhina G.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».