Asymmetric structure of the influenza A virus and novel function of the matrix protein M1

Cover Page

Cite item

Full Text

Abstract

Influenza virus is an enveloped virus. It comprises two major modules: external lipoprotein envelope and internal ribonucleoprotein (RNP) containing the genomic negative-strand RNA. Lipoprotein envelope contains four vital proteins: hemagglutinin (HA), neuraminidase (NA), transmembrane ionic channel M2, and minor amounts of nuclear export protein NEP. RNP contains RNA and four polypeptides: major nucleocapsid protein NP and three polymerase subunits PB1, PB2, PA. Both modules are linked with each other by matrix M1 maintaining the virus integrity. According to the structural function, NP and M1 are predominant in virus particle in the amounts of 1000 and 3000 molecules, respectively. In addition to the structural function, M1 plays a role in regulation of intracellular and nuclear migration of viral RNP and virus assembly, referred as budding process, at the plasma membrane in infected cells. The bipolar structure of the influenza virus characterized by asymmetric location of RNP and nonregular distribution of M1 and M2 inside the virion is reviewed. The role of M1 in maintaining the asymmetric structure of the virus particle and regulation of RNP transport inside virus particle is considered. First experimental data confirming (i) intravirion RNP transport and its outside exit directed by the M1 and (ii) the importance of this process in virus uncoating and initiation of infection in target cell are discussed. A novel class of antiviral agents activating ATP-ase of the early endosome compartment in the target cell is discussed.

About the authors

O. P. Zhirnov

Virology «Federal Research Centre of Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya»

Author for correspondence.
Email: zhirnov@inbox.ru
Russian Federation

References

  1. Жирнов О.П., Букринская А.Г. Белки вируса гриппа. Включение вновь синтезированных вирусных белков в вирионы. Вопросы вирусологии. 1982; (5): 549-56.
  2. Жирнов О.П., Маныкин А.А. рН-зависимые перестройки в структуре вируса гриппа А. Вопросы вирусологии. 2014; 59 (3): 41-6.
  3. Жирнов О.П. Белки вируса гриппа: солюбилизация in vitro матриксного белка М1 вириона зависит от протеолитического нарезания гемагглютинина и от рН. В кн.: Каверин Н.В., ред. Молекулярная биология и генетическая инженерия вирусов. М.; 1989: 50-7.
  4. Kilbourne E.D., Murphy J.S. Genetic studies of influenza viruses. I. Viral morphology and growth capacity as exchangeable genetic traits. Rapid in ovo adaptation of early passage Asian strain isolates by combination with PR8. J. Exp. Med. 1960; 111: 387-406.
  5. Roberts P.C., Lamb R.A., Compans R.W. The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation. Virology. 1998; 240 (1): 127-37.
  6. McCown M.F., Pekosz A. The influenza A virus M2 cytoplasmic tail is required for infectious virus production and efficient genome packaging. J. Virol. 2005; 79 (6): 3595-605.
  7. Iwatsuki-Horimoto K., Horimoto T., Noda T., Kiso M., Maeda J., Watanabe S. et al. The cytoplasmic tail of the influenza A virus M2 protein plays a role in viral assembly. J. Virol. 2006; 80 (11): 5233-40.
  8. Elleman C.J., Barclay W.S. The M1 matrix protein controls the filamentous phenotype of influenza A virus. Virology. 2004; 321 (1): 144-53.
  9. Roberts K.L., Leser G.P., Ma C., Lamb R.A. The amphipathic helix of influenza a virus M2 protein is required for filamentous bud formation and scission of filamentous and spherical particles. J. Virol. 2013; 87 (18): 9973-82.
  10. Bruce E.A., Digard P., Stuart A.D. The Rab11 pathway is required for influenza A virus budding and filament formation. J. Virol. 2010; 84 (12): 5848-59.
  11. Choppin P.W., Murphy J.S., Tamm I. Studies of two kinds of virus particles which comprise influenza A2 virus strains. III. Morphological characteristics: independence to morphological and functional traits. J. Exp. Med. 1960; 112: 945-52.
  12. McHardy A.C., Adams B. The role of genomics in tracking the evolution of influenza A virus. PLoS Pathog. 2009; 5 (10): e1000566.
  13. Eisfeld A.J., Neumann G., Kawaoka Y. At the centre: influenza A virus ribonucleoproteins. Nat. Rev. Microbiol. 2015; 13 (1): 28-41.
  14. Zhirnov O.P., Klenk H.D., Wright P.F. Aprotinin and similar protease inhibitors as drugs against influenza. Antiviral. Res. 2011; 92 (1): 27-36.
  15. Zhirnov O.P., Manykin A.A. Abnormal morphological vesicles in influenza a virus exposed to acid pH. Bull. Exp. Biol .Med. 2015; 158 (6): 776-80.
  16. Pinto L.H., Lamb R.A. The M2 proton channels of influenza A and B viruses. J. Biol. Chem. 2006; 281 (14): 8997-9000.
  17. Zhirnov O.P. Solubilization of matrix protein M1/M from virions occurs at different pH for orthomyxo- and paramyxoviruses. Virology. 1990; 176 (1): 274-9.
  18. Zhirnov O.P. Isolation of matrix protein M1 from influenza viruses by acid-dependent extraction with nonionic detergent. Virology. 1992; 186 (1): 324-30.
  19. Yasuda J., Nakada S., Kato A., Toyoda T., Ishihama A. Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology. 1993; 196 (1): 249-55.
  20. Noda T., Sugita Y., Aoyama K., Hirase A., Kawakami E., Miyazawa A. et al. Three-dimensional analysis of ribonucleoprotein complexes in influenza A virus. Nat. Commun. 2012; 3: 639.
  21. Nayak D.P., Balogun R.A., Yamada H., Zhou Z.H., Barman S. Influenza virus morphogenesis and budding. Virus Res. 2009; 143 (2): 147-61.
  22. Rossman J.S., Lamb R.A. Influenza virus assembly and budding. Virology. 2011; 411 (2): 229-36.
  23. Rossman J.S., Jing X., Leser G.P., Lamb R.A. Influenza virus M2 protein mediates ESCRT-independent membrane scission. Cell. 2010; 142 (6): 902-13.
  24. Harris A., Cardone G., Winkler D.C., Heymann J.B., Brecher M., White J.M. et al. Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc. Natl. Acad. Sci. U S A. 2006; 103 (50): 19123-7.
  25. Barman S., Nayak D.P. Lipid raft disruption by cholesterol depletion enhances influenza A virus budding from MDCK cells. J. Virol. 2007; 81 (22): 12 169-78.
  26. Ali A., Avalos R.T., Ponimaskin E., Nayak D.P. Influenza virus assembly: effect of influenza virus glycoproteins on the membrane association of M1 protein. J. Virol. 2000; 74 (18): 8709-19.
  27. Helenius A. Unpacking the incoming influenza virus. Cell. 1992; 69 (4): 577-8.
  28. Sieczkarski S.B., Whittaker G.R. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J. Virol. 2002; 76 (20): 10 455-64.
  29. Stauffer S., Feng Y., Nebioglu F., Heilig R., Picotti P., Helenius A. Stepwise priming by acidic pH and a high K+ concentration is required for efficient uncoating of influenza A virus cores after penetration. J. Virol. 2014; 88 (22): 13 029-46.
  30. Akira S., Uematsu S., Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006; 124 (4): 783-801.
  31. Moore C.B., Ting J.P. Regulation of mitochondrial antiviral signaling pathways. Immunity. 2008; 28 (6): 735-9.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2016 Zhirnov O.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».