УЛК 544.623

ТРАНСПОРТНЫЕ СВОЙСТВА КОМПОЗИТОВ La₂(WO₄)₃-Al₂O₃

© 2023 г. Н. Н. Пестерева^{а, *}, А. Ф. Гусева^а, Н. А. Василенко^а, И. В. Бекетов^{а, b}, Н. В. Селезнева^а

^аУральский федеральный университет им. первого Президента России Б.Н. Ельцина, Екатеринбург, Россия ^bИнститут электрофизики УрО РАН, Екатеринбург, Россия

> *e-mail: Natalie. Pestereva@urfu.ru Поступила в редакцию 13.02.2023 г. После доработки 19.06.2023 г. Принята к публикации 30.06.2023 г.

Твердофазным методом получены композиты $(1-\phi) La_2(WO_4)_3-\phi Al_2O_3$ (ϕ — объемная доля нанодисперсного оксида алюминия), исследованы их термические свойства, морфология, электропроводность в зависимости от температуры, давления кислорода в газовой фазе и состава. Обнаружено, что проводимость композитов $(1-\phi)La_2(WO_4)_3-\phi Al_2O_3$ проходит через максимум при ϕ ~ 0.1 и достигает значения 7×10^{-3} См/см при 1000° С, что в 7 раз выше проводимости $La_2(WO_4)_3$ при данной температуре. Методом ЭДС и измерениями зависимости электропроводности от давления кислорода в газовой фазе установлен ионный характер проводимости композитов $(1-\phi)La_2(WO_4)_3-\phi Al_2O_3$.

Ключевые слова: кислородно-ионная проводимость, композиционные твердые электролиты, вольфрамат лантана, гетерогенное допирование

DOI: 10.31857/S0424857023120095, EDN: QAZLGW

ВВЕДЕНИЕ

Растущие экологические проблемы требуют поиска способов частичной или полной замены традиционных источников энергии. Наиболее чистым топливом, не приводящим к загрязнению окружающей среды, является водород, который к тому же имеет высокую теплотворную способность. Твердооксидные топливные элементы (ТОТЭ) с протонным или кислородно-ионным электролитом в качестве мембраны позволяют преобразовывать химическую энергию окисления водорода в электрическую с минимальными потерями [1—6]. Поэтому в настоящее время уделяется большое внимание поиску твердых электролитов с высокой кислородной или протонной проводимостью.

Использование в технике вольфраматов редкоземельных металлов $Ln_2(WO_4)_3$ (Ln = La, Sm, Eu, Gd, Nd) с моноклинной структурой связано, прежде всего, с их уникальными оптическими и каталитическими свойствами [7–11]. Однако, исследования последних лет показали, что у этих соединений может быть еще одно интересное применение, связанное с их электротранспортными свойствами. В работе [12] установлено, что $Ln_2(WO_4)_3$ (Ln = La, Sm, Eu, Gd, Nd) являются кислородно-ионными проводниками, хотя величина их ионной проводимости недостаточно высо-

ка для практического применения. Так, при температуре 900° C электропроводность $Ln_2(WO_4)_3$ (Ln = = La, Sm, Eu, Gd, Nd) варьируется в пределах от 10^{-5} до 10^{-4} Ом⁻¹ см⁻¹ [12], тогда как приемлемой для практического использования считается проводимость не менее 10^{-3} Om⁻¹ cm⁻¹ [2, 13]. Эффективным методом повышения ионной проводимости является гетерогенное допирование низкопроводящих веществ высокодисперсными инертными добавками, такими как SiO₂, Al₂O₃, ТіО₂ и др. [13–15]. Создание композиционных материалов с высокой ионной проводимостью позволяет расширить выбор твердых электролитов с различными функциональными свойствами и решить проблему улучшения их эксплуатационных характеристик, что является весьма актуальной задачей современного материаловедения.

Причины высокой ионной проводимости композитов и требования к ее компонентам — матрице и дисперсной добавке, к настоящему времени хорошо изучены и описаны в литературе [13–18]. Вольфраматы РЗЭ Ln₂(WO₄)₃ (Ln = La, Sm, Eu, Gd, Nd) обладают такими необходимыми для материалов для твердотельной ионики качествами, как термическая и термодинамическая стабильность [19]. Из систем, содержащих вольфраматы металлов, наиболее хорошо исследованы композиты MeWO₄—SiO₂, MeWO₄—WO₃, MeWO₄—

 V_2O_5 (Me – Ca, Sr, Ba) [20, 21], для которых установлено увеличение проводимости на 1-2 порядка при добавлении дисперсной добавки к соответствующему вольфрамату. Поскольку вольфраматы щелочноземельных и редкоземельных металлов имеют сходное строение (структурные типы шеелита и дефектного шеелита соответственно), но электропроводность вольфраматов редкоземельных металлов примерно на два порядка выше, можно прогнозировать высокую ионную проводимость в композитах на основе вольфраматов РЗЭ. Для композитов на основе вольфраматов металлов к настоящему времени наиболее хорошо исследована роль добавки кислотного оксида (WO_3 , V_2O_5) в формировании высокой композитной проводимости. WO_3 и V_2O_5 , обладающие низкой поверхностной энергией, распространяются по поверхности зерен вольфрамата, образуя поверхностную микрофазу с высокой кислородной проводимостью, существование которой подтверждено экспериментально [22]. Что же касается Al_2O_3 и SiO_2 , гетерогенных добавок с высокой поверхностной энергией, не склонных к твердофазному растеканию, традиционно применяемых для увеличения проводимости композитов на основе ионных солей [13], то к настоящему времени их роль в увеличении проводимости композитов на основе вольфраматов не исследована. Поэтому в настоящей работе предпринята попытка получить композиты $(1 - \phi)La_2(WO_4)_3 - \phi Al_2O_3$ и исследовать их электротранспортные свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы для исследования

В работе использовали порошок нанодисперсного оксида алюминия, полученный методом электровзрыва алюминиевой проволоки, с удельной площадью поверхности 69 м²/г, что соответствует среднему размеру частиц 20 нм. РФА показал, что порошок содержит 89% δ -Al₂O₃ и 11% γ -Al₂O₃.

Вольфрамат лантана синтезировали по стандартной керамической технологии из La₂O₃ и WO₃ квалификации "ос. ч.", предварительно отожженных 5 ч при 500°С для удаления адсорбированной воды. Так как оксид лантана чрезвычайно гигроскопичен и легко поглощает углекислый газ из атмосферы, непосредственно после отжига его помещали в эксикатор, а затем при охлаждении — в бюкс, в котором и проводили взвешивание на аналитических весах. Синтез проводили на воздухе согласно уравнению

$$La_2O_3 + 3WO_3 = La_2(WO_4)_3$$
 (1)

в 4 стадии, с промежуточными перетираниями в среде этилового спирта с последовательным уве-

Таблица 1. Режим синтеза вольфрамата лантана

Стадия	T, °C	τ, ч
1-я	650	10
2-я	750	15
3-я	900	20
4-я	1000	25

личением температуры отжига. Режим синтеза представлен в табл. 1.

Композиты $(1 - \phi)$ La₂ $(WO_4)_3 - \phi$ Al₂O₃ с объемной долей Al_2O_3 $\phi \le 0.7$ получены механическим смешением порошков $La_2(WO_4)_3$ и Al_2O_3 в среде этилового спирта. Порошки прессовали в дисковые брикеты толщиной 2 мм и диаметром 10 мм на ручном гидравлическом прессе при давлении 64 МПа. Затем брикеты спекали при 1000°С в течение 10 ч. Выбор температурного режима спекания обусловлен тем, что при более низкой температуре брикеты композитов получались недостаточно плотными, а при более высокой температуре вероятен фазовый переход оксида алюминия в менее активную модификацию [23–27]. Для электрических измерений на торцевые поверхности брикетов наносили мелкодисперсную платину, которую припекали при 1000°C в течение часа.

Экспериментальные методики

Рентгенофазовый анализ вольфрамата лантана и композитов ($1-\phi$)La₂(WO₄)₃— ϕ Al₂O₃ проводили с помощью дифрактометра Bruker D8 Advance с Cu K_{α} -излучением в интервале углов $10^{\circ} \le 2\theta \le 80^{\circ}$ с шагом 0.05° и временем экспозиции 1 с.

Электропроводность композитов $(1-\phi) La_2(WO_4)_3-\phi Al_2O_3$ измеряли методом импедансной спектроскопии с помощью прибора Immittance Parameters Meter IP11 (Институт проблем управления им. Трапезникова, Москва) в частотном диапазоне $500~\Gamma \mu-200~\kappa \Gamma \mu$ (амплитуда тестового сигнала автоматически изменяется в диапазоне 3-300~mB) в интервале температур $600-1000^{\circ}$ С. Годографы импеданса обрабатывались при помощи программного обеспечения ZView. Для обработки использовались схемы с одним, двумя и тремя элементами постоянной фазы, соединенными параллельно с сопротивлением.

Зависимость проводимости от парциального давления кислорода измеряли при фиксированных температурах 770, 820 и 880°С. Давление кислорода задавали с помощью прибора ZirconiaM и контролировали кислородным насосом и датчиком из твердого электролита на основе $ZrO_2(Y_2O_3)$.

Сумму ионных чисел переноса композитов $(1-\phi)La_2(WO_4)_3-\phi Al_2O_3$ измеряли методом ЭДС, основанном на использовании концентрацион-

Образец		a, Å	b, Å	c, Å
$\overline{\mathrm{Al_2O_3}}$		7.8956(6), 7.9167(8)	7.9467(0)	11.6601(3)
La ₂ (WO ₄) ₃		7.8780(3)	11.8391(8)	11.7180(0)
Смесь $0.3 \text{La}_2(\text{WO}_4)_3 - 0.7 \text{Al}_2 \text{O}_3$ до отжига	La ₂ (WO ₄) ₃	7.8545(4)	11.8226(1)	11.7179(9)
	Al_2O_3	7.9340(0)	7.9559(9)	11.7110(0)
Смесь $0.3 \text{La}_2(\text{WO}_4)_3 - 0.7 \text{Al}_2 \text{O}_3$ после отжига	La ₂ (WO ₄) ₃	7.8549(5)	11.8259(6)	11.7229(6)
	Al_2O_3	7.9340(1)	7.9560(1)	11.7110(0)
La ₂ (WO ₄) ₃ Card PDF № 15-0428		7.890	11.830	11.650
δ-Al ₂ O ₃ Card PDF № 46-1215 γ-Al ₂ O ₃ Card PDF № 29-0063		7.934 7.924	7.956 —	11.711 —

Таблица 2. Параметры элементарных ячеек $La_2(WO_4)_3$, γ - Al_2O_3 и δ - Al_2O_3 , рассчитанные по методу Ритвелда

ных гальванических цепей. Для реализации градиента парциального давления кислорода один из электродов омывали кислородом ($P_{0_2}'' = 1$ атм), а другой воздухом ($P_{0_2}' = 0.21$ атм) с помощью микрокомпрессора при постоянной скорости подачи газов. Расчет суммы ионных чисел переноса проводили по формуле Нернста для проводников со смешанной проводимостью:

$$E = \frac{RT}{4F} \sum t_{\text{noh}} \ln \frac{P_{\text{O}_2}^{"}}{P_{\text{O}_2}^{"}},\tag{2}$$

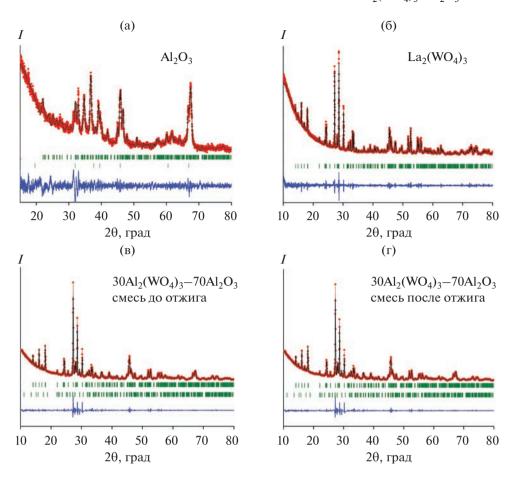
где R — молярная газовая постоянная, T — температура в кельвинах, F — постоянная Фарадея, $\Sigma t_{\rm ион}$ — сумма ионных чисел переноса, $P_{\rm O_2}^{"}$ — парциальное давление кислорода, равное 1 атм, $P_{\rm O_2}^{'}$ — парциальное давление кислорода, равное 0.21 атм.

Морфологию композитов и их элементный состав исследовали методами электронной микроскопии и энергодисперсионного анализа сколов брикетов образцов на сканирующем электронном микроскопе Evo LS-10 Carl Zeiss NTS (УЦКП УрФУ). Изображения поверхности исследуемых материалов были получены с использованием детекторов обратно-рассеянных электронов (режим ВЅЕ) и вторичных электронов (режим ВЅЕ). Морфологию нанодисперсного порошка оксида алюминия исследовали методом просвечивающей электронной микроскопии с помощью микроскопа JEOL JEM2100.

Средний размер частиц оксида алюминия, отожженного при 1000°C в течение 10 ч, определяли на анализаторе дисперсности SALD-7101 Shimadzu. В основе измерения на данном приборе лежит метод лазерного светорассеяния. Для исследования образец помещали в устройство для пробоподготовки, где он диспергировался при

помощи специальной мешалки и ультразвука. Полученная суспензия автоматически подавалась в кювету прибора, где измерялась интенсивность дифрагированного на суспензии лазерного луча в зависимости от угла. По полученной зависимости произведен расчет распределения частиц по радиусам.

Синхронные термические анализы ТГ и ДСК проводили на приборе Netzsch STA 409 PC Luxx с квадроупольным масс-спектрометром QMS 403 Aëolos. Для проведения исследований порошок, содержащий по 50 об. % $La_2(WO_4)_3$ и Al_2O_3 , нагревали до 1000° C.

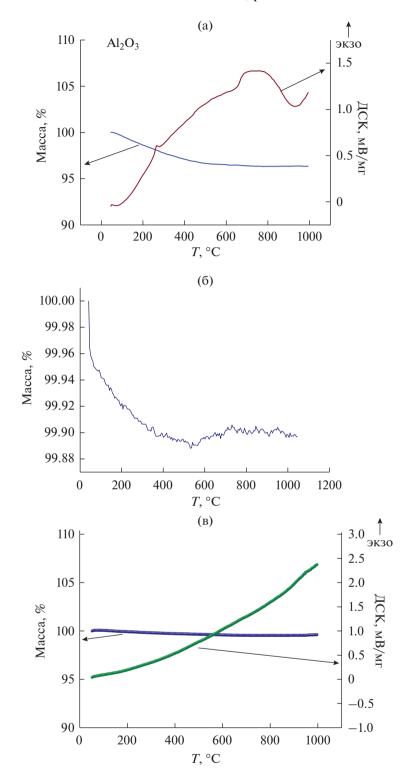

Математическую обработку результатов проводили с использованием программного обеспечения Origin.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЯ

Результаты рентгенофазового анализа

Результаты РФА вольфрамата лантана, оксида алюминия, смеси $0.3La_2(WO_4)_3-0.7Al_2O_3$ до и после отжига (при 1000° С в течение 10 ч) представлены в табл. 2 и на рис. 1.

Вольфрамат лантана имеет моноклинную структуру (структурный тип $Eu_2(WO_4)_3$), в которой тетраэдры WO_4 связаны кислородными вершинами с додекаэдрами LaO_8 . Из представленной рентгенограммы (рис. 1б) видно, что синтезированный вольфрамат лантана не содержит каких-либо примесных фаз. Параметры элементарной ячейки $La_2(WO_4)_3$, определенные методом Ритвелда в рамках структуры вольфрамата европия с пространственной группой C2/c, имеют удовлетворительную сходимость со значениями, приведенными в литературе (табл. 2), что также


Рис. 1. Рентгенограммы, обработанные по методу Ритвелда: точки — экспериментальные данные; вертикальные штрихи — угловые положения рефлексов; верхняя линия — расчетный профиль; нижняя линия — разница между экспериментальными данными и теоретическим профилем.

подтверждает однофазность синтезированного $La_2(WO_4)_3$.

Для исследования фазового состава композитов провели РФА: 1) исходного нанодисперсного оксида алюминия, 2) неотожженной смеси $0.3\text{La}_2(WO_4)_3-0.70\text{Al}_2O_3$, рис. 1в, 3) смеси $0.3\text{La}_2(WO_4)_3-0.70\text{Al}_2O_3$, отожженной при 1000°C в течение 10 ч, рис. 1г. Согласно литературным данным [23-27], при температуре $800-1000^\circ\text{C}$ γ -Al₂O₃ (δ -Al₂O₃) переходит в θ -Al₂O₃, который при $1100-1200^\circ\text{C}$ переходит в α -Al₂O₃. Температура фазовых переходов зависит от химической и термической предыстории γ -Al₂O₃ (δ -Al₂O₃). Поэтому важно было понять, в виде каких фаз оксид алюминия находится в композитах, и убедиться в отсутствии его взаимодействия с вольфраматом лантана.

Исходный оксид алюминия, полученный методом электровзрыва, содержит δ -Al₂O₃ и γ -Al₂O₃, рис. 1а. На рентгенограмме смеси $0.3La_2(WO_4)_3$ — $0.70Al_2O_3$ все основные рефлексы принадлежат $La_2(WO_4)_3$; интенсивность рефлексов оксида

алюминия пренебрежимо мала по сравнению с рефлексами вольфрамата лантана, что связано с высокодисперсностью и низкой отражательной способность Al_2O_3 по сравнению с $La_2(WO_4)_3$. Кроме того, большинство рефлексов δ -Al₂O₃ и γ -Al₂O₃ совпадают с рефлексами La₂(WO₄)₃, а различия в рентгенограммах δ -Al₂O₃ и γ -Al₂O₃ весьма невелики. Поэтому установить фазовый состав оксида алюминия из рентгенограммы смеси не представляется возможным. Поскольку рентгенограмма нанодисперсного оксида алюминия (рис. 1а) показывает, что основной фазой в нем является δ -Al₂O₃, то эта же фаза присутствует и в неотожженной смеси $0.3La_2(WO_4)_3-0.70Al_2O_3$. Сравнение рентгенограмм неотожженной и отожженной смесей $0.3La_2(WO_4)_3-0.70Al_2O_3$ (рис. 1в, 1г, табл. 2) показывает, что они практически идентичны. Это позволяет утверждать, что композит не содержит никаких дополнительных фаз, кроме вольфрамата лантана и оксида алюминия, т.е. химического взаимодействия между компонентами композита не происходит.

Рис. 2. Результаты ТГ-ДСК: (a) Al_2O_3 , (б) $La_2(WO_4)_3$, (в) смесь $0.5La_2(WO_4)_3-0.5Al_2O_3$.

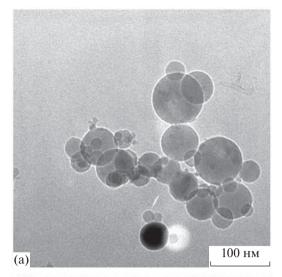
Результаты ТГ-ДСК

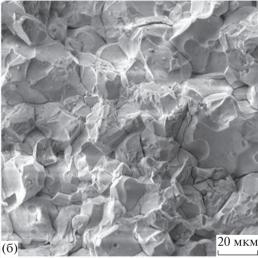
Данные ТГ-ДСК для исходных оксида алюминия, вольфрамата лантана и смеси, содержащей по 50 об. % $La_2(WO_4)_3$ и Al_2O_3 , представлены на рис. 2a-2b.

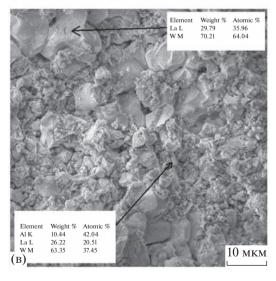
Нанопорошок оксида алюминия, использованный в работе, является довольно гигроскопичным, и до температуры 400°С теряет воду, уменьшаясь по массе приблизительно на 3.5% (рис. 2a), что согласуется с литературными дан-

ными о гигроскопичности γ -Al₂O₃ [26, 28]. При температуре выше 700°C наблюдаются тепловые эффекты, связанные с переходом оксида алюминия в более стабильные фазы (возможно, θ -Al₂O₃) [23–27].

Потеря массы $La_2(WO_4)_3$ при нагревании до 1000° С составляет приблизительно 0.1% (рис. 2б), что лежит в пределах ошибки прибора, т.е. $La_2(WO_4)_3$ не гигроскопичен.


Потеря массы смеси, содержащей по 50 об. % $La_2(WO_4)_3$ и Al_2O_3 , составляет 0.29% и происходит до 400°C (рис. 2в). Очевидно, это связано с удалением воды, адсорбированной оксидом алюми-Тепловых эффектов ДЛЯ 0.5La₂(WO₄)₃-0.5Al₂O₃ до температуры 1000°С не зафиксировано (рис. 2в), хотя на термограмме оксида алюминия они имеются. Отсутствие тепловых эффектов на термограмме смеси можно, вероятно, объяснить стабилизацией наночастиц δ -Al₂O₃ и γ -Al₂O₃ в композите. Из литературы известно, что активные модификации Al₂O₃ можно стабилизировать введением небольшого количества некоторых оксидов и сместить переход в неактивные фазы в область более высоких температур [29]. Одним из лучших стабилизаторов, замедляющих переход "активного" γ - Al_2O_3 в "неактивные" θ -Al₂O₃ и α -Al₂O₃, является La₂O₃, который на межфазной границе Al₂O₃|La₂O₃ образует тонкую поверхностную пленку LaAlO₃, защищающую нижележащие слои оксида алюминия от трансформации [29]. Возможно, в исследуемом композите на межфазной границе $La_2(WO_4)_3|Al_2O_3$ протекает поверхностное взаимодействие с образованием LaAlO₃, стабилизирующим δ -Al₂O₃ и γ -Al₂O₃


Отсутствие тепловых эффектов при нагревании смеси $La_2(WO_4)_3$ и Al_2O_3 , наряду с данными $P\Phi A$, свидетельствует об отсутствии химического взаимодействия между компонентами композитов $(1-\varphi)La_2(WO_4)_3-\varphi Al_2O_3$

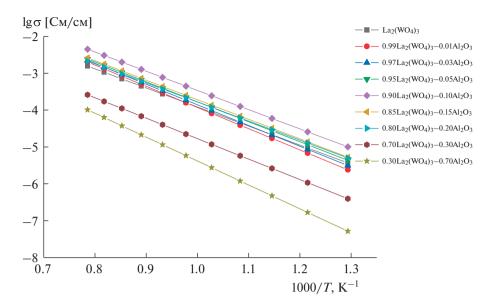

Исследование морфологии и элементного состава композитов и их компонентов методами СЭМ-ЭЛА и ПЭМ

Результаты ПЭМ для нанопорошка Al_2O_3 , а также СЭМ-ЭДА для $La_2(WO_4)_3$ и композита, содержащего 10 об. % Al_2O_3 , представлены на рис. 3a-3в. ЭДА для сколов брикетов $La_2(WO_4)_3$ (б) и композита $0.90La_2(WO_4)_3-0.10Al_2O_3$ (в).


Размер зерен оксида алюминия в исходном нанопорошке варьируется от 5 до 70 нм (рис. 3а), тогда как в образце композита он существенно больше, порядка сотен нм, рис. 3в, в результате процесса рекристаллизации при спекании композита. Так как его точное значение определить

Рис. 3. ПЭМ-изображение нанопорошка Al_2O_3 (a); СЭМ-изображения и данные ЭДА для сколов брикетов $La_2(WO_4)_3$ (б) и композита $0.90La_2(WO_4)_3-0.10Al_2O_3$ (в).

Рис. 4. Годографы импеданса композита $0.90\text{La}_2(\text{WO}_4)_3 - 0.10\text{Al}_2\text{O}_3$ при разных температурах.


из микрофотографий композитов не удалось ввиду недостаточного увеличения, провели исследование дисперсности оксида алюминия, отожженного при 1000°С в течение 10 ч (т.е., в тех же условиях, в которых спекали композиты) методом лазерного светорассеяния. Согласно данным этого метода, средний размер частиц оксида алюминия составляет 200 нм. Зерна $La_2(WO_4)_3$ в образце чистого вольфрамата лантана (рис. 3б) и композита (рис. 3в) практически не отличаются по размеру, который варьируется в пределах 5-15 мкм. Энергодисперсионный анализ показал присутствие всех составляющих элементов (La, W, and Al) в композите (рис. 3в). На поверхности крупных зерен зафиксированы только La и W (таблица на рис. Зв), что позволяет идентифицировать их как вольфрамат лантана. В месте скопления мелких зерен оксида алюминия зафиксированы все три элемента La, W и Al (таблица на рис. 3в). Наличие La и W связано с рассеянием электронного пучка, "захватывающим" области вольфрамата лантана, прилегающие к зернам Al_2O_3 .

Электропроводность и числа переноса композитов $(1 - \varphi)La_2(WO_4)_3 - \varphi Al_2O_3$

Типичные годографы импеданса для композитов и эквивалентная схема с двумя элементами постоянной фазы, соединенными параллельно с сопротивлением, представлены на рис. 4.

В ходе обработки данных было обнаружено, что разделение объемной и зернограничной проводимости не представляется возможным. Для первой полуокружности, выходящей из нуля координат, рассчитанная величина емкости характеризуется значениями $C \sim 10^{-10} \, \Phi$, что позволяет отнести ее к сумме объемных и зернограничных свойств электролита. При температурах выше 700°С появляется полуокружность, отвечающая за электродную поляризацию (емкость $C \sim 10^{-7} \, \Phi$ характерна для электродных процессов).

Температурные зависимости электропроводности композитов в аррениусовских координатах представлены на рис. 5.

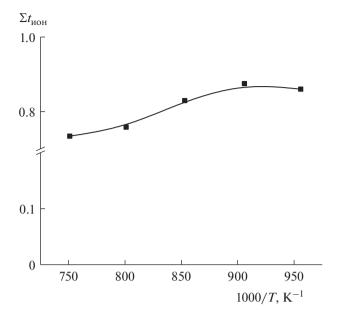
Рис. 5. Политермы проводимости композитов $(1 - \phi)$ La₂ $(WO_4)_3$ - ϕ Al₂O₃ с разным объемным содержанием оксида алюминия.

Зависимости электропроводности от температуры для композитов $(1-\phi)La_2(WO_4)_3-\phi Al_2O_3$ и вольфрамата лантана $La_2(WO_4)_3$ подчиняются уравнению Аррениуса:

$$\sigma = \left(\frac{A}{T}\right) \exp\left(-\frac{E_{a}}{kT}\right). \tag{3}$$

Энергия активации проводимости композитов, содержащих до 30 об. % оксида алюминия, близка по значению к $E_{\rm a}$ проводимости матрицы композита — ${\rm La_2(WO_4)_3}$ и составляет приблизительно 1.1 эВ. Для композитов с большим содержанием ${\rm Al_2O_3}$ значение энергии активации несколько выше: 1.3—1.7 эВ.

Ранее в работе [12] было установлено, что $La_2(WO_4)_3$ является кислородно-ионным проводником. Соответственно, можно предположить, что и композиты на его основе с добавкой высокодисперсного изолятора Al_2O_3 также будут обладать кислородной проводимостью. Для проверки этого суждения была исследована зависимость электропроводности композитов $(1-\phi)La_2(WO_4)_3-\phi Al_2O_3$ от парциального давления кислорода в газовой фазе (рис. 6).


Как видно из рис. 6, проводимость композита $0.85 \text{La}_2(\text{WO}_4)_3 - 0.15 \text{Al}_2 \text{O}_3$ не зависит от P_{O_2} , что указывает на ее ионный характер.

Ионный характер проводимости композитов подтвержден также измерением суммы ионных чисел переноса методом ЭДС. Температурная зависимость $\Sigma t_{\text{ион}}$ композита, содержащего 15 об. % Al_2O_3 , представлена на рис. 7.

Сумма ионных чисел переноса композита $0.85 La_2(WO_4)_3 - 0.15 Al_2O_3$ в зависимости температуры варьируется в пределах 0.75 - 0.90, что свидетельствует о преимущественно ионном характере проводимости. Поскольку матрица композитов $(La_2(WO_4)_3)$ является кислородно-ионными проводником [12], можно предположить, что и в композитах на ее основе ионный перенос также осуществляется ионами кислорода.

Рис. 6. Зависимость проводимости композита $0.85 La_2(WO_4)_3 - 0.15 Al_2O_3$ от давления кислорода в газовой фазе при разных температурах.

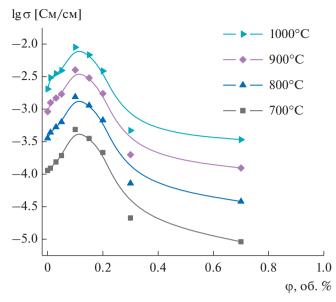


Рис. 7. Температурная зависимость суммы ионных чисел переноса композита $0.85La_2(WO_4)_3-0.15Al_2O_3$ (метод ЭДС).

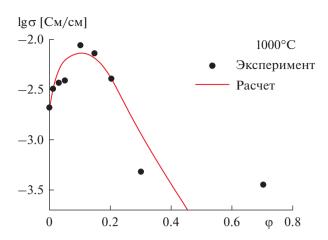
Концентрационная зависимость проводимости композитов при разных температурах представлена на рис. 8.

Концентрационную зависимость проводимости композитов можно разделить на два участка с $\phi < 0.1$ и $\phi > 0.1$. Для участка $\phi < 0.1$ с увеличением содержания дисперсной добавки проводимость композитов растет, достигая при $\phi = 0.1$ максимального значения. При 1000° С $\sigma = 7 \times 10^{-3}$ См/см, что в 7 раз выше проводимости $\text{La}_2(\text{WO}_4)_3$ при данной температуре. Далее при $\phi > 0.1$ проводимость композитов падает с ростом объемной доли Al_2O_3 .

Подобный "куполообразный" вид концентрационной зависимости проводимости характерен для композитов "проводник-изолятор" [13-18, 20-21] и объясняется в рамках перколяционной модели. Процессы, происходящие на межфазной границе $La_2(WO_4)_3|Al_2O_3$, и ее строение пока не исследованы. Однако, к настоящему моменту определенно установлено, что более высокая ионная проводимость композитов по сравнению с его компонентами связана с межфазными границами [13-18, 22] толщиной $0.01-0.1L_{\rm A}$ (где $L_{\rm A}$ размер дисперсных частиц), которые можно рассматривать как тонкую высокопроводящую пленку. При увеличении содержания дисперсной добавки в композите последовательно увеличивается площадь межфазных границ, что приводит к увеличению проводимости (при $\phi < 0.1$). При определенной концентрации ($\phi = \phi_{max} = 0.1$) пленка проводящих границ становится сплошной и образуется связно-дисперсная система, об-

Рис. 8. Зависимость электропроводности композитов $(1-\phi)$ La₂(WO₄)₃ $-\phi$ Al₂O₃ от объемной доли Al₂O₃ при различных температурах.

ладающая наивысшей проводимостью. Таким образом, композит, содержащий 10 об. % Al_2O_3 , имеет максимальное значение электропроводности. Дальнейшее увеличение содержания Al_2O_3 в композите ($\phi > \phi_{\text{max}}$ или $\phi > 0.1$) приводит к тому, что изолятор оксид алюминия создает блокирующие слои, нарушающие сплошность высокопроводящих границ $La_2(WO_4)_3|Al_2O_3$, вследствие чего проводимость композита уменьшается.


В работе была рассчитана концентрационная зависимость проводимости композитов (1 — $-\phi$)La₂(WO₄)₃— ϕ Al₂O₃ с использованием уравнения смешения [13, 30, 31]

$$\sigma^{\alpha(\phi)} = (1 - \phi - \phi_s) \sigma_b^{\alpha(\phi)} + \phi_s \sigma_s^{\alpha(\phi)} + \phi \sigma_a^{\alpha(\phi)}, \quad (4)$$

где σ — проводимость композита, σ_b — объемная проводимость ионного проводника (La₂(WO₄)₃); σ_s — проводимость пограничного слоя La₂(WO₄)₃|Al₂O₃; σ_a — объемная проводимость дисперсной добавки (Al₂O₃); ϕ — объемная доля Al₂O₃; ϕ_s — объемная доля пограничного слоя. В рамках блочно-слоевой модели [13, 30, 31] концентрация межфазных областей в композите определяется уравнением

$$\varphi_{\rm s} = \left(\frac{2\beta\lambda}{L_{\rm A}}\right) \varphi(1 - \varphi), \tag{5}$$

где β — геометрический фактор (β = 3 для кубических или сферических частиц); λ — толщина пограничного слоя; $L_{\rm A}$ — размер частиц дисперсной добавки (Al_2O_3).

Рис. 9. Результаты расчета электропроводности композитов $(1-\phi)$ La₂ $(WO_4)_3$ - ϕ Al₂ O_3 по уравнению (4) в сопоставлении с экспериментальными данными при температуре 1000° C.

Параметр α(φ) учитывает изменение морфологии композита с ростом содержания дисперсной добавки в соответствии с уравнением

$$\alpha(\varphi) = (1 - \varphi)\alpha_1 + \varphi\alpha_2, \tag{6}$$

где параметры α_1 , α_2 определяются морфологией композита при $\phi \to 0$ и $\phi \to 1$. Общее правило смешения (уравнение (4)) с параметром α, заданным уравнением (6), обеспечивает удовлетворительное описание поведения систем перколяционного типа [13, 22, 30, 31] в случае близкого размера частиц компонентов композита. Если размер частиц компонентов существенно различается, как в данном случае, то расчет с использованием уравнений (4)—(5) можно применять только в области небольших концентараций дисперсной добавки, до $\phi = 0.3$, так как в этой области вероятность контакта между частицами La₂(WO₄)₃ и АІ₂О₃ больше или равна вероятности контакта между частицами Al_2O_3 . Поэтому при расчете принимали во внимание ограниченность модели величиной $\phi < 0.3$; экспериментальную точку $\phi =$ = 0.7 не использовали для рассмотрения.

Для расчета по уравнению (4) были использованы следующие параметры: $\alpha_1 = 0.7$; $\alpha_2 = 2$; $\sigma_b = 2.0 \times 10^{-3}$ См/см (La₂(WO₄)₃); $\sigma_a = 1 \times 10^{-5}$ См/см (Al₂O₃); $\sigma_s = 5 \times 10^{-1}$ См/см; $L_A = 20$ нм; $\lambda = 2$ нм.

На рис. 9 приведена расчетная кривая в сравнении с экспериментальными результатами.

На рисунке видно удовлетворительное соответствие расчетной кривой экспериментальным точкам в области низких концентраций дисперсной добавки. В области высоких концентраций (после максимума) наблюдается расхождение между расчетными и экспериментальными значениями электропроводности, которое может

быть связано с полидисперсностью композита в отличие от модельной системы.

ЗАКЛЮЧЕНИЕ

В системе $La_2(WO_4)_3$ — Al_2O_3 обнаружен композитный эффект: гетерогенное допирование вольфрамата лантана нанодисперсным оксидом алюминия приводит к росту проводимости в 7 раз. Этот эффект можно объяснить образованием высокопроводящей поверхностной пленки на межфазной границе $La_2(WO_4)_3|Al_2O_3$. Куполообразная форма зависимости проводимости композитов $(1-\phi)La_2(WO_4)_3-\phi Al_2O_3$ от объемной доли Al_2O_3 интерпретирована в рамках теории перколяции. Расчет проводимости композитов по уравнению смешения показал удовлетворительное согласие с экспериментальными значениями в области низких концентраций дисперсной добавки.

БЛАГОДАРНОСТИ

Авторы выражают искреннюю благодарность старшим научным сотрудникам Института электрофизики УрО РАН А.И. Медведеву и А.М. Мурзакаеву за РФА и ПЭМ-исследования нанодисперсного оксида алюминия.

ФИНАНСИРОВАНИЕ РАБОТЫ

Результаты исследований получены в рамках выполнения государственного задания Министерства науки и высшего образования РФ (номер проекта 123031300049-8) с использованием оборудования УЦКП "Современные нанотехнологии" УрФУ (рег. № 2968), поддержанным Министерством науки и высшего образования РФ (проект № 075-15-2021-677).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Mahato, N., Banerjee, A., Gupta, A., Omar, S., and Balani, K., Progress in material selection for solid oxide fuel cell technology: A review, *Progress in Mater. Sci.*, 2015, vol. 72, p. 141. https://doi.org/10.1016/j.pmatsci.2015.01.001
- 2. Medvedev, D., Lyagaeva, J., Gorbova, E., Demin, A., and Tsiakaras, P., Advanced materials for SOFC application: Strategies for the development of highly conductive and stable solid oxide proton electrolytes, *Progress in Mater. Sci.*, 2016, vol. 75, p. 38.
 - https://doi.org/10.1016/j.pmatsci.2015.08.00
- 3. Gómez, S. and Hotza, D., Current developments in reversible solid oxide fuel cells, *Renewable and Sustainable Energy Reviews*, 2016, vol. 61, p.155. https://doi.org/10.1016/j.rser.2016.03.005

- Zhang, Y., Knibbe, R., Sunarso, J., Zhong, Y., Zhou, W., Shao, Z., and Zhu, Z., Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C, Adv. Mater., 2017, vol. 29, p. 1700132. https://doi.org/10.1002/adma.201700132
- Da Silva, F. and De Souza, T., Novel materials for solid oxide fuel cell technologies: A literature review, *Intern. J. Hydrogen Energy*, 2017, vol. 42(41), p. 26020. https://doi.org/10.1016/j.ijhydene.2017.08.105
- Danilov, N., Lyagaeva, J., Vdovin, G., and Medvedev, D., Multifactor performance analysis of reversible solid oxide cells based on proton-conducting electrolytes, *Appl. Energy*, 2019, vol. 237, p. 924. https://doi.org/10.1016/j.apenergy.2019.01.054
- 7. Zhou, Y. and Yan, B., Re₂(MO₄)₃: Ln³⁺(RE = Y, La, Gd, Lu; M = W, Mo; Ln = Eu, Sm, Dy) microcrystals: controlled synthesis, microstructure and tunable luminescence, *CrystEngComm.*, 2013, vol. 15(28), p. 5694. https://doi.org/10.1039/c3ce40495a
- 8. Kaczmarek, A.M. and Van Deun, R., Rare earth tungstate and molybdate compounds from 0D to 3D architectures, *Chem. Soc. Rev.*, 2013, vol. 42(23), p. 8835. https://doi.org/10.1039/c3cs60166h
- Guzik, M., Tomaszewicz, E., Guyot, Y., Legendziewicz, J., and Boulon, G., Structural and spectroscopic characterizations of new Cd_{1-3x}Nd_{2x-x}MoO₄ scheelite-type molybdates with vacancies as potential optical materials, *J. Mater. Chem. C*, 2015, vol. 3(16), p.4057. https://doi.org/10.1039/c4tc02963a
- Liu, J., Kaczmarek, A.M., and Van Deun, R., Advances in tailoring luminescent rare-earth mixed inorganic materials, *Chem. Soc. Rev.*, 2018, vol. 47, p. 7225. https://doi.org/10.1039/c7cs00893g
- Ke, J, Adnan Younis, M., Kong, Y., Zhou, H., Liu, J., Lei, L., and Hou, Y., Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: A Review. *Nano-Micro Letters*, 2018, vol. 10(4). https://doi.org/10.1007/s40820-018-0222-4
- Pestereva, N., Guseva, A., Vyatkin, I., and Lopatin, D., Electrotransport in tungstates Ln₂(WO₄)₃ (Ln = La, Sm, Eu, Gd), *Solid State Ionics*, 2017, vol. 301, p. 72. https://doi.org/10.1016/j.ssi.2017.01.009
- 13. Уваров, Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд-во СО РАН, 2008. 258 с. [Uvarov, N.F., Composite solid electrolytes (in Russian), Novosibirsk: ISSC SB RAS Publ., 2008. 258 р.]
- Knauth, P., Ionic Conductor Composites: Theory and Materials, J. Electroceramics, 2000, vol. 5(2), p.111. https://doi.org/10.1023/a:1009906101421
- Yaroslavtsev, A., Composite materials with ionic conductivity: from inorganic composites to hybrid membranes, *Russ. Chem. Rev.*, 2009, vol. 78, p. 1013. https://doi.org/10.1070/RC2009v078n11ABEH004066
- Alekseev, D., Mateyshina, Y., and Uvarov, N., Effect of nanodiamond additives on the ionic conductivity of the (C₂H₅)₃CH₃NBF₄ organic salt, *Russ. J. Electrochem.*, 2022, vol. 58(7), p. 594. https://doi.org/10.1134/S1023193522070035
- 17. Ulihin, A. and Uvarov, N., Ionic Conductivity of composite solid electrolytes (C₄H₉)₄NBF₄-Al₂O₃, *Russ. J.*

- *Electrochem.*, 2021, vol. 57(10), p.1015. https://doi.org/10.1134/S1023193521080140
- Alekseev, D., Mateyshina, Y., and Uvarov, N., Transport properties of LiClO₄—nanodiamond composites, *Russ. J. Electrochem.*, 2021, vol. 57(10), p. 1037. https://doi.org/10.1134/S1023193521100037
- 19. Евдокимов, А.А., Ефремов, В.А., Трунов, В.К. Соединения редкоземельных элементов. Молибдаты, вольфраматы, М.: Наука, 1991. С. 51–58.
- Guseva, A., Pestereva, N., Otcheskikh, D., and Kuznetsov, D., Electrical properties of CaWO₄–SiO₂ composites, *Solid State Ionics*, 2021, vol. 364, p. 115626. https://doi.org/10.1016/j.ssi.2021.115626
- Pestereva, N., Guseva, A., Kuznetsov, D., Selezneva, N., and Korona, D., Effect of silicon, vanadium, and tungsten oxide additives on the electrical properties of composites based on CaWO₄, *Russ. J. Phys. Chem.*, A, 2020, vol. 94(12), p. 2482. https://doi.org/10.1134/S0036024420120213
- Guseva, A., Pestereva, N., and Uvarov, N., New oxygen ion conducting composite solid electrolytes Sm₂(WO₄)₃-WO₃, Solid State Ionics, 2023, vol. 394, p. 116196. https://doi.org/10.1016/j.ssi.2023.116196
- 23. Lippens, B.C. and Steggerda, J.J., *Physical and Chemical Aspects of adsorbents and catalysts* / B.G. Linsen, London: Acad fress, 1970, no. 4, p. 190–232.
- 24. Trimm, D.l. and Stanislaus, A., The control of pore size in alumina catalyst: A review, *Appl. Catal.*, 1986, vol. 21, no. 2, p. 215.
- 25. Stumpf, H.C., Allen, R.R., Newsome, J.W., and Tucker, C.M., Thermal transformations of aluminas and alumina hydrates, *Ind. End. Chem.*, 1953, vol. 45, no. 4, p. 819.
- Wilson, S.J., The dehydration of boehmite, γ-AlOOH, to γ-Al₂O₃, *J. Solid State Chem.*, 1979, vol. 30, no. 2, p. 247.
- 27. Ono, T., Ohguchi, Y., and Togari, O., *Preparation of Catalysts III* // Edit, G. Poncelet, P. Grange, P. Jacobs. Amsterdam: Elsevier Scientific Publishers, 1983, p. 631.
- 28. Козерожец, И.В., Панасюк, Г.П., Семенов, Е.А., Данчевская, М.Н., Азарова, Л.А., Симоненко, Н.П. Исследование превращений наноразмерного порошка бемита и γ-Al₂O₃ при термической обработке. *Журн. неорган. химии.* 2020. Т. 65. № 4. С. 549. https://doi.org/10.31857/S0044457X20040091
- Шкрабина, Р.А., Корябкина, Н.А., Ушаков, В.А. Лаусберг, М., Мороз, Э.М., Исмагилов, З.Р. Термостабильность системы La₂O₃—Al₂O₃. Кинетика и катализ. 1996. Т. 37. С. 116.
- Uvarov, N., Composite solid electrolytes: recent advances and design strategies, *J. Solid State Electrochem.*, 2011, vol. 15, p. 367. https://doi.org/10.1007/s10008-008-0739-4
- Uvarov, N., Estimation of composites conductivity using a general mixing rule, *Solid State Ionics*, 2000, vols. 136–137, p. 1267. https://doi.org/10.1016/S0167-2738(00)00585-3