УЛК 541.13

КИСЛОРОДНО-ИОННЫЕ КОМПОЗИТЫ MWO_4 -SiO₂ (M – Sr, Ba)¹

© 2023 г. Н. Н. Пестерева^{а, *}, А. Ф. Гусева^а, В. А. Белятова^а, Д. В. Корона^а

^аУральский федеральный университет им. первого президента России Б.Н. Ельцина, Екатеринбург, Россия *e-mail: Natalie.Pestereva@urfu.ru

Поступила в редакцию 28.07.2022 г. После доработки 02.12.2022 г. Принята к публикации 22.12.2022 г.

Композиционные материалы (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂, где f — объемная доля дисперсной добавки SiO₂, приготовлены твердофазным методом. Полученные композиты были исследованы методами РФА, ТГ-ДСК, СЭМ-РСМА. Электропроводность композитов измерена методом электрохимического импеданса в зависимости от температуры, парциального давления кислорода в газовой фазе и состава. Для оценки вклада ионной проводимости проведены измерения суммы ионных чисел переноса методом ЭДС. Показано, что добавление 20-25 об. % нано-SiO₂ к низкопроводящим кислородно-ионным проводникам SrWO₄ и BaWO₄ приводит к увеличению ионной проводимости композитов на их основе соответственно в 20 и 12 раз. Повышение проводимости в исследуемых системах объясняется дополнительным вкладом межфазных границ, образующихся между матрицей MeWO₄ и наночастицами дисперсоида.

Ключевые слова: композиты, кислородно-ионные проводники, гетерогенное допирование, вольфраматы

DOI: 10.31857/S0424857023080066, EDN: XXVOLA

ВВЕДЕНИЕ

Высокотемпературные кислородно-ионные проводники представляют большой интерес в связи с их замечательными электролитическими свойствами, которые могут быть использованы в первую очередь для различных электрохимических приложений, включая высокотемпературные топливные элементы, ионопроводящие мембраны, газовые сенсоры и т.д. [2]. Низкую проводимость материалов можно повысить с помощью гетерогенного допирования, т.е. добавления в материалы высокодисперсных и химически инертных частиц, таких как Al_2O_3 , SiO_2 , SnO_2 , WO_3 и др., с образованием композиционных твердых электролитов. Причиной увеличения проводимости в композитах является влияние межфазных границ. К настоящему времени получено большое количество композитных электролитов; российские и зарубежные работы Майера [3, 4], Агравала и Гупты [5], Уварова [6], Ярославцева [7] содержат несколько сотен ссылок на работы, посвященные получению и транспортным свойствам композиционных твердых электролитов разного типа. Эффект увеличения ионной проводимости наиболее хорошо изучен для композитов

с катионной проводимостью. Композитные твердые электролиты с проводимостью по ионам кислорода на основе вольфраматов щелочноземельных металлов впервые были обнаружены Нейманом с сотр. [8—11]. Резкий рост проводимости по ионам кислорода наблюдался при добавлении полупроводников WO_3 или V_2O_5 к вольфраматам WA_3 (V_2O_5) по границам зерен вольфрамата WA_3 (V_2O_5) по границам зерен вольфрамата WA_3 (V_2O_5) по кислородно-ионную проводимость.

Оксид вольфрама и оксид ванадия, используемые в качестве дисперсных добавок в работах [8— 11], обладают некоторыми общими свойствами: во-первых, они имеют низкую поверхностную энергию и поэтому могут распространяться по поверхности зерен другого компонента [12], вовторых, они являются полупроводниками [13, 14]. Для понимания природы композиционного эффекта интересно получить композиты с дисперсной добавкой, обладающей совершенно противоположными свойствами. Такой добавкой может служить высокодисперсный кремнезем, изолятор с высокой поверхностной энергией, не склонный к твердофазному растеканию. Гетерогенное допирование вольфраматов ЩЗМ высокодисперсными частицами диэлектрика пока исследовано только на примере системы CaWO₄—SiO₂ в работе

¹ По материалам доклада на 16-м Международном Совещании "Фундаментальные проблемы ионики твердого тела", Черноголовка, 27.06.—03.07.2022.

[15], где установлен рост проводимости композитов более чем на порядок по сравнению с материалом матрицы $CaWO_4$. Поэтому в настоящей работе была поставлена задача получить композиты $(1-f)SrWO_4-fSiO_2$ и $(1-f)BaWO_4-fSiO_2$, исследовать их морфологию и электротранспортные свойства.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы для исследования

Вольфраматы ЩЗМ SrWO $_4$ и BaWO $_4$ синтезировали твердофазным методом из SrCO $_3$ (BaCO $_3$) квалификации "ч. д. а." и WO $_3$ квалификации "ос. ч.". Смесь реагентов, взятых в стехиометрических количествах, нагревали на воздухе с постепенным повышением температуры от 700 до 1000° С в четыре приема с промежуточными перетираниями в среде этанола. Время отжига на каждом этапе варьировалось от 10 до 24 ч.

Композиты (1 - f)SrWO₄—fSiO₂ и (1 - f)BaWO₄ $f SiO_2$, где f — объемная доля SiO_2 , получали механическим смешением порошков вольфрамата ЩЗМ и SiO₂. В качестве дисперсной добавки использовали коллоидный диоксид кремния высокой чистоты (торговое название Aerosil-300, фирма Degussa) с содержанием SiO₂ 99.9%. По данным производителя [16], удельная поверхность нанопорошка составляет 300 м²/г, а средний размер частиц – 7 нм. Тщательно перетертые в среде этилового спирта смеси порошков SrWO₄ (BaWO₄) и SiO₂ прессовали в брикеты (диаметром 10 мм и толщиной 2 мм) под давлением 64 МПа и спекали в течение 10 ч при 1000°С. Относительная плотность брикетов композитов, рассчитанная по их размерам и массе, составляла 80-99% в зависимости от содержания SiO₂. Для проведения электрических измерений на поверхности таблеток наносили пористые Pt-электроды, которые припекали при 1000°C в течение 1 ч.

Экспериментальные методики

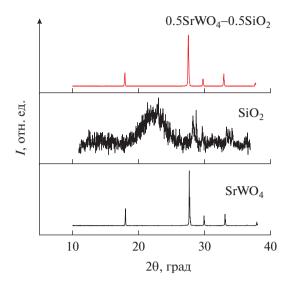
Рентгенофазовый анализ вольфраматов щелочноземельных металлов и композитов на их основе проводили с помощью дифрактометра Bruker D8 Advance в $\text{Cu}K_{\alpha}$ -излучении.

Исследование морфологии композитов и их элементного состава проводили методами сканирующей электронной микроскопии (СЭМ) и рентгеноспектрального микроанализа (РСМА) сколов брикетов образцов на электронном микроскопе Evo LS-10 Carl Zeiss NTS (ЦКП ИЕНиМ УрФУ). Изображения поверхности исследуемых материалов были получены с использованием детекторов обратно-рассеянных электронов (режим ВЅЕ) и вторичных электронов (режим SЕ).

Синхронные термические анализы ТГ и ДСК проводили на приборе Netzsch STA 409 PC Luxx с квадроупольным масс-спектрометром QMS 403 Aeolos. Порошки следующих составов 0.74SrWO₄—0.26SiO₂, 0.70BaWO₄—0.30SiO₂ нагревали до 1000°C.

Электропроводность композитов $(1 - f)MWO_4$ $fSiO_{2}$ (M – Sr, Ba) измеряли методом импедансной спектроскопии с помощью прибора Immittance Parameters Meter IPI1 (Институт проблем управления им. Трапезникова, Москва) в частотном диапазоне 500 Гц-200 кГц (амплитуда тестового сигнала автоматически изменяется в диапазоне 3-300 мВ) в интервале температур 500-1050°С. Измерение температурной зависимости электропроводности осуществляли в режиме охлаждения со скоростью 1°C в мин. Зависимость проводимости от парциального давления кислорода измеряли в изотермических условиях. Давление кислорода задавали с помощью прибора ZirconiaM и контролировали кислородным насосом и датчиком из твердого электролита на основе $ZrO_2(Y_2O_3)$.

Для определения суммы ионных чисел переноса композитов использовали метод ЭДС, основанный на использовании концентрационных гальванических цепей. Для реализации градиента парциального давления кислорода один из электродов принудительно омывали кислородом ($P_{O_2}^{//}=1$ атм), а другой воздухом ($P_{O_2}^{/}=0.21$ атм) с помощью микрокомпрессора. Скорость подачи газов к электродам была постоянна. Изоляция газовых пространств электродов достигалась путем тщательной шлифовки и прижатия брикета композита к алундовой трубке. Сумму ионных чисел переноса вычисляли по формуле Нернста для проводников со смешанной проводимостью:


$$E = \frac{RT}{4F} \Sigma t_{\text{\tiny HOH}} \ln \frac{P_{\text{\tiny O}_2}^{//}}{P_{\text{\tiny O}_2}^{/}},\tag{1}$$

где R — молярная газовая постоянная, T — температура в градусах Кельвина, F — постоянная Фарадея, $\Sigma t_{\rm ион}$ — сумма ионных чисел переноса, $P_{\rm O_2}^{//}$ — парциальное давление кислорода, равное 1 атм, $P_{\rm O_2}^{/}$ — парциальное давление кислорода, равное 0.21 атм.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Результаты рентгенофазового анализа

Согласно данным РФА, вольфраматы стронция и бария были получены однофазными, а композиты (1 - f)BaWO₄—fSiO₂ и (1 - f)SrWO₄—fSiO₂ двухфазными и содержали только исходные компоненты. На рис. 1 представлены данные рентге-

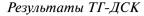


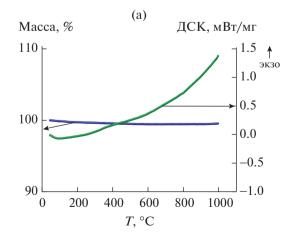
Рис. 1. Данные рентгенофазового анализа $SrWO_4$, SiO_2 и композита $0.5SrWO_4-0.5SiO_2$.

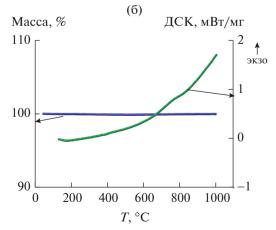
нофазового анализа $SrWO_4$, SiO_2 и композита $0.5SrWO_4$ – $0.5SiO_2$.

Рентгенограмма SiO₂ представлена размытым максимумом при $2\theta = 22.0^{\circ}$, который является характерным для аморфного SiO₂ (JCPDS № 29-0085), а также рефлексами кварца: $2\theta = 28.7^{\circ}$, 33.3° (JCPDS № 83-540). Поскольку нанодисперсный SiO₂ сильно аморфизован, то на рентгенограмме композита $0.5\text{SrWO}_4-0.5\text{SiO}_2$ на фоне рефлексов кристаллического вольфрамата стронция рефлексов оксида кремния не видно (см. рис. 1). Присутствие оксида кремния подтверждено данными СЭМ-РСМА. Аналогичный результат получен и для системы BaWO₄-SiO₂.

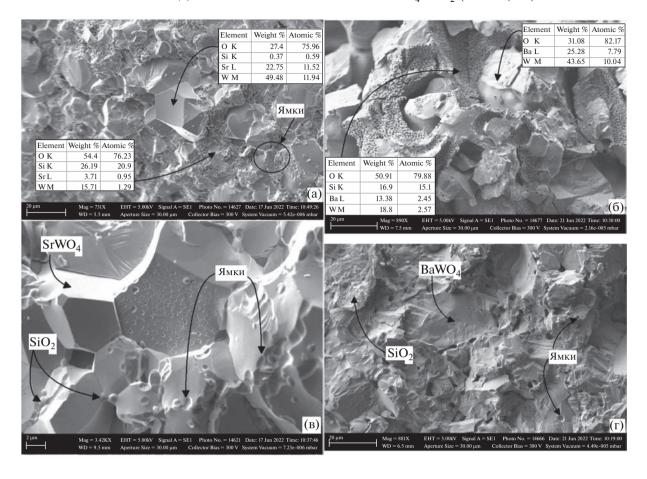
Таким образом, результаты РФА свидетельствуют об отсутствии химического взаимодействия компонентов композитов.

Результаты ТГ-ДСК смесей компонентов исследуемых систем представлены на рис. 2.


Масса сырой смеси состава $0.74 SrWO_4-0.26 SiO_2$, судя по данным $T\Gamma$ -ДСК, уменьшается до температуры 400° С примерно на 0.5%, а при температуре 100° С наблюдается небольшой тепловой эффект. Это, вероятно, связано с удалением гигроскопической влаги и углекислого газа. При более высоких температурах масса не изменяется и тепловых эффектов не обнаружено (рис. 2a). Согласно данным $T\Gamma$ -ДСК смеси состава $0.70 BaWO_4 - 0.30 SiO_2$ (рис. 26), масса образца не изменяется, тепловых эффектов не наблюдается. Эти данные свидетельствуют о термодинамической стабильности композитов: химическое взаимодействие между вольфраматами ЩЗМ и оксидом кремния отсутствует.


Таким образом, двумя независимыми методами (ТГ-ДСК и РФА) установлено отсутствие химического взаимодействия между компонентами исследуемых композитов.

Результаты электронной микроскопии и рентгеноспектрального микроанализа


Морфология композитов и их элементный состав исследованы методом СЭМ-РСМА. Микрофотографии образцов композитов различного состава и результаты РСМА представлены на рис. 3.

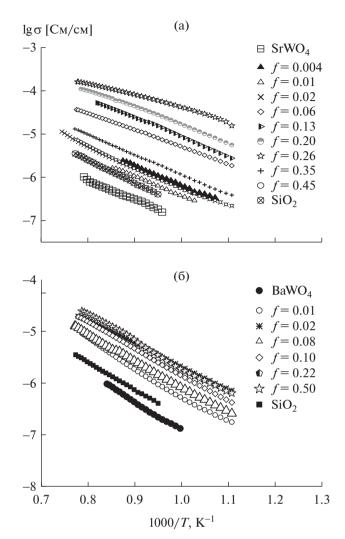
На микрофотографиях сколов брикетов композитов (1-x)МWO₄-xSiO₂ (M - Sr, Ba) видны крупные зерна вольфраматов ЩЗМ размером 10-20 мкм и мелкие зерна SiO₂ размером приблизительно 0.1-1 мкм. При большом содержании SiO₂ (20-30 об. %) крупные зерна SrWO₄ и BaWO₄ равномерно окружены в несколько слоев мелкими зернами SiO₂ (рис. 3a, 36). Анализ PCMA-спек-

Рис. 2. Данные ТГ-ДСК смесей: 0.74SrWO₄-0.26SiO₂ (a), 0.70BaWO₄-0.30SiO₂ (б).

Рис. 3. Микрофотографии и результаты PCMA сколов брикетов композитов: 0.74SrWO₄-0.26SiO₂ (a), 0.70BaWO₄-0.30SiO₂ (б), 0.996SrWO₄-0.004SiO₂ (в), 0.996BaWO₄-0.01SiO₂ (г).

тров показал, что на поверхности крупных зерен атомное соотношение $W/\text{Ш}3M \approx 1$, кремний либо отсутствует, либо его содержание пренебрежимо мало (десятые доли %), что позволяет идентифицировать крупные зерна как вольфрамат ЩЗМ. Спектр РСМА мелких зерен, напротив, показывает большое содержание кремния и незначительные количества Sr (Ba) и W, что позволяет идентифицировать их как SiO₂.

В композитах с малым содержанием кремнезема $(0.4-1\ oб.\ \%)$ видны как отдельные зерна SiO_2 , так и их цепи, которые они образуются вокруг крупных зерен вольфрамата (рис. 3в, 3г). Обнаружено также, что мелкие зерна SiO_2 "проваливаются" в зерна $SrWO_4$, образуя "ямки". На микрофотографиях сколов брикетов композитов с большим содержанием оксида кремния также можно разглядеть "ямки", которые образовались в результате втягивания зерен кремнезема в крупные зерна вольфрамата. Эти области на микрофотографиях выглядят как "изъязвленная" поверхность крупных зерен (рис. 3а).


Исследование электропроводности композитов в зависимости от температуры и парциального давления кислорода в газовой фазе

Политермы проводимости композитов (1 — -f)MWO₄—fSiO₂ (M — Sr, Ba) представлены на рис. 4a, 4б.

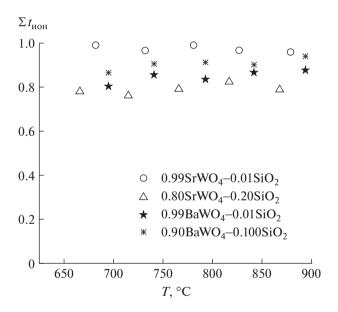
Эффективная энергия активации проводимости композитов составляет 0.9—1.1 эВ во всем исследованном температурном интервале. Близость энергии активации проводимости к 1 эВ косвенно свидетельствует о кислородно-ионном характере проводимости [17].

Зависимость проводимости композитов (1 - f) MeWO₄—fSiO₂ (Me — Sr, Ba) от парциального давления кислорода в газовой фазе при разных температурах представлена на рис. 5.

Как видно из рис. 5, проводимость исследуемых композитов не зависит от $P_{\rm O_2}$, что указывает на ее ионный характер.



Рис. 4. Температурные зависимости электропроводности композитов: (1 - f)SrWO₄-fSiO₂ (a), (1 - f)BaWO₄-fSiO₂ (б).


Исследование суммы ионных чисел переноса методом ЭДС

Для подтверждения ионного характера проводимости композитов в работе измерены ионные числа переноса композитов методом ЭДС. Температурные зависимости $\Sigma t_{\text{ион}}$ исследуемых композитов представлены на рис. 6.

Сумма ионных чисел переноса композитов (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂ в зависимости от состава и температуры варьируется в пределах 0.75-1.00. С учетом того, что сумма ионных чисел переноса, измеренная методом ЭДС, имеет заниженное значение для керамики, так как из-за сквозной пористости брикетов кислород диффундирует через образец, можно полагать, что в композитах доминирует ионный перенос.

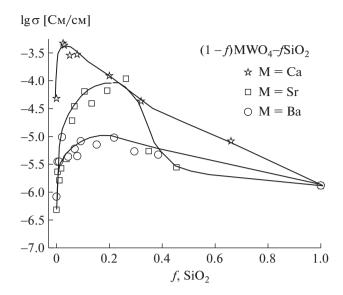
Рис. 5. Зависимость проводимости композитов (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂ от давления кислорода в газовой фазе при $T=800^{\circ}$ C.

Рис. 6. Зависимость суммы ионных чисел переноса композитов (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂ от температуры.

Итак, двумя независимыми методами (зависимость электропроводности от давления кислорода в газовой фазе и измерение чисел переноса методом ЭДС) установлен преимущественно ионный характер проводимости композитов (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂. Поскольку матрицы композитов (SrWO₄ и BaWO₄) являются кислородно-ионными проводниками [8—10], можно предположить, что и в композитах на их основе носителями заряда также являются ионы кислорода.

Зависимость проводимости композитов $(1-f)SrWO_4$ — $fSiO_2$ и $(1-f)BaWO_4$ — $fSiO_2$ от содержания дисперсной добавки

Зависимости электропроводности композитов (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂ от объемной доли оксида кремния представлены на рис. 7.


Зависимость проводимости композитов (1 - f)SrWO₄—fSiO₂ и (1 - f)BaWO₄—fSiO₂ от содержания дисперсной добавки имеет вид кривой с максимумом, близкой по форме к полученной ранее в работе [15] для композитов (1 - f)CaWO₄—fSiO₂.

Такой "куполообразный" вид концентрационной зависимости проводимости характерен для систем "ионная соль-диэлектрик", хорошо описан в литературе [1] и объясняется в рамках перколяционной модели. В исследуемых системах добавление низкопроводящего нанопорошка SiO₂ к низкопроводящему вольфрамату ЩЗМ вызывает увеличение проводимости в системах $CaWO_4$ – SiO_2 и $BaWO_4$ – SiO_2 максимум в 12 раз, а в системе $SrWO_4-SiO_2$ – приблизительно на 2 порядка. Рост электропроводности связан с высокой ионной проводимостью межфазной границы $MeWO_4|SiO_2$, образующейся в месте контакта матрицы и дисперсной добавки. Сегрегация мелких зерен SiO₂ в приповерхностной области крупных зерен матрицы вольфрамата ЩЗМ, обнаруженная в данной работе методом СЭМ-РСМА, способствует образованию связной системы проводящих межфазных границ MeWO₄|SiO₂.

Проходя через максимум, электропроводность начинает снижаться из-за разрыва сплошности межфазной границы частицами диэлектрика SiO₂. Максимум проводимости наблюдается при содержании \sim 3 об. % SiO₂ в системе CaWO₄— SiO₂ (по данным [15]), \sim 20 об. % SiO_2 в системе $BaWO_4-SiO_2$ и 25 об. % SiO_2 в системе $SrWO_4-$ SiO₂. Смещение положения максимума в область большего содержания дисперсной добавки, вероятно, связано с увеличением размера зерен вольфрамата ЩЗМ. Средний размер зерен CaWO₄ -3 мкм (по данным [15]), $SrWO_4 - 10$ мкм, $BaWO_4 -$ 20 мкм. Размер зерен оксида кремния в трех системах одинаков. Уменьшение степени дисперсности приводит к уменьшению площади межфазных границ $MeWO_4|SiO_2|$ и, как следствие к увелисодержания SiO₂, требуемого чению образования связной системы межфазных границ.

Таким образом, в системах $SrWO_4-SiO_2$ и $BaWO_4-SiO_2$ имеет место композитный эффект проводимости.

В работе проведен расчет проводимости композитов со случайным распределением частиц в

Рис. 7. Зависимость электропроводности композитов (1-f)CaWO₄—fSiO₂ (по данным работы [15]), (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂ от объемной доли SiO₂ при температуре 900°C.

зависимости от содержания дисперсной добавки, используя уравнение смешения [1, 18]:

$$\sigma^{\alpha(f)} = (1 - f - f_{S})\sigma_{b}^{\alpha(f)} + f_{S}\sigma_{S}^{\alpha(f)} + f\sigma_{A}^{\alpha(f)}, \quad (2)$$

где σ — электропроводность композита; σ_b — объемная проводимость чистого ионного проводника (SrWO₄ или BaWO₄); σ_S — удельная электропроводность пограничного слоя; σ_A — объемная проводимость оксидной гетерогенной добавки (SiO₂); f — объемная доля SiO₂; f_S — объемная доля пограничного слоя. Для композита в рамках блочно-слоевой модели концентрация межфазных областей определяется уравнением:

$$f_{\rm S} = \left(\frac{2\beta\lambda}{L_{\rm A}}\right) f(1-f),\tag{3}$$

где β — геометрический фактор (β = 3 для кубических или сферических частиц); λ — толщина пограничного слоя; $L_{\rm A}$ — размер частиц дисперсной добавки (SiO₂).

Параметр $\alpha(f)$ зависит от содержания дисперсной добавки по следующему уравнению:

$$\alpha(f) = (1 - f)\alpha_1 + f\alpha_2,\tag{4}$$

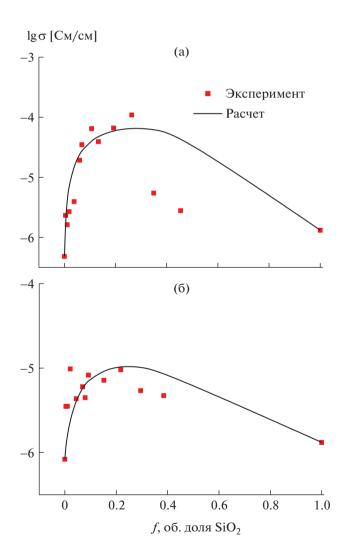

где параметры $-1 \le \alpha_1$, $\alpha_2 \le 1$ определяются морфологией композита при $f \to 0$ и $f \to 1$. Общее правило смешивания (уравнение (2)) с параметром α , заданным уравнением (4), обеспечивает удовлетворительное описание поведения систем перколяционного типа [1, 18]. Для расчета использовались следующие параметры, приведенные в табл. 1.

Таблица 1. Параметры для расчета по уравнению (2)

Система	α_1	α_2	$L_{\rm A}$, нм	λ, нм	$\sigma_1(\text{MeWO}_4), \text{Cm/cm}$	$\sigma_2(SiO_2)$, См/см	σ _S , См/см
SrWO ₄ –SiO ₂	0.8	0.1	10	1	4.9×10^{-7}	1.3×10^{-6}	0.002
$BaWO_4-SiO_2$	0.8	0.15	10	0.3	8.3×10^{-7}	1.3×10^{-6}	0.002

На рис. 8а, 8б представлены результаты расчетов в сравнении с экспериментальными результатами.

На рисунке видно удовлетворительное согласие расчетной кривой экспериментальными результатами, особенно в области небольших концентраций дисперсной добавки. Расхождение между расчетной и экспериментальной кривыми электропроводности связано с тем, что реальный композит отличается от модельной системы. В

Рис. 8. Результаты расчета электропроводности композитов: (1-f)SrWO₄—/SiO₂ (a), (1-f)BaWO₄—/SiO₂ (б) в сопоставлении с экспериментальными данными при температуре 900°C.

модели для расчета взяты средние размеры зерен, при этом порошки исходных компонентов не являются монодисперсными. Тем не менее расчетная зависимость правильно отражает общую тенденцию изменения электропроводности с увеличением концентрации дисперсной добавки.

ЗАКЛЮЧЕНИЕ

Твердофазным методом получены композиты (1-f)SrWO₄—fSiO₂ и (1-f)BaWO₄—fSiO₂. Методами РФА и ТГ-ДСК установлено отсутствие химического взаимодействия между компонентами композитов. Измерение суммы ионных чисел переноса методом ЭДС и исследование зависимости электропроводности композитов от давления кислорода в газовой фазе показало, что они обладают преимущественно ионной проводимостью.

Концентрационные зависимости проводимости композитов $(1 - f)SrWO_4 - fSiO_2$ и $(1 - f)SrWO_4 - fSiO_3$ и (1f) BaWO₄—fSiO₂ имеют вид кривой с максимумом. Введение дисперсной добавки приводит к увеличению проводимости в системе SrWO₄-SiO₂ максимум на два порядка, в системе BaWO₄-SiO₂ в 12 раз. Таким образом, в исследуемых системах имеет место композитный эффект проводимости. Рост проводимости в исследуемых системах обусловлен образованием высокопроводящих межфазных границ матрица/дисперсная добавка. Сегрегация мелких зерен SiO₂ в приповерхностной области крупных зерен матрицы вольфрамата ШЗМ, обнаруженная методом СЭМ-РСМА, способствует образованию связно-дисперсной системы проводящих межфазных границ SrWO₄|SiO₂ или BaWO₄|SiO₂. Уравнение смешения удовлетворительно описывает концентрационную зависимость проводимости композитов (1 - f)SrWO₄ $fSiO_2$ и $(1 - f)BaWO_4 - fSiO_2$.

ФИНАНСИРОВАНИЕ РАБОТЫ

Результаты исследований получены в рамках выполнения государственного задания Министерства науки и высшего образования РФ (номер проекта 123031300049-8) с использованием оборудования УЦКП "Современные нанотехнологии" УрФУ (рег. № 2968), поддержанным Министерством науки и высшего образования РФ (проект № 075-15-2021-677).

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Уваров, Н.Ф. Композиционные твердые электролиты. Новосибирск: Изд-во СО РАН, 2008. 258 с. [Uvarov, N.F., Composite solid electrolytes (in Russian), Novosibirsk: ISSC SB RAS Publ., 2008. 259 p.]
- 2. Ishihara, T., *Perovskite oxide for solid oxide fuel cells*, L.: Springer, 2009, 302 p.
- 3. Maier, J., Ionic conduction in space charge regions, *Prog. Solid State Chem.*, 1995, vol. 23, p. 171. https://doi.org/10.1016/0079-6786(95)00004-E
- Gregori, G., Merkle, R., and Maier, J., *Prog. Mater. Sci.* 2017, vol. 89, p. 252. https://doi.org/10.1016/j.pmatsci.2017.04.009
- 5. Agrawal, R.C. and Gupta, R.K., Superionic solid: composite electrolyte phase an overview, *J. Mater. Sci.*, 1999, vol. 34, p. 1131. https://doi.org/10.1023/A:1004598902146
- Uvarov, N.F., Composite solid electrolytes: recent advances and design strategies, *J. Solid State Electrochem.*, 2011, vol. 15, p. 367. https://doi.org/10.1007/s10008-008-0739-4
- Yaroslavtsev, A.B., Composite materials with ionic conductivity: from inorganic composites to hybrid membranes, *Russ. Chem. Rev.*, 2009, vol. 78, № 11, p. 1013.
- 8. Нейман, А.Я., Пестерева, Н.Н., Чжоу, Ю., Нечаев, Д.О., Котенева, Е.А., Ванек, К., Хиггинс, Б., Волкова, Н.А., Корчуганова, И.Г. Электрохимия. 2013. Т. 49. С. 999. [Neiman, A.Ya., Pestereva, N.N., Zhou, Y., Nechayev, D.O., Koteneva, E.A., Vanec, K., Higgins, B., Volkova, N.A., and Korchuganova, I.G., Russ. J. Electrochem., 2013, vol. 49, p. 895.]
- Нейман, А.Я., Пестерева, Н.Н., Шарафутдинов, А.Р. и др., Проводимость и числа переноса метакомпозитов MeWO₄—WO₃ (Me Ca, Sr, Ba). Электрохимия. 2005. Т. 41. С. 680. [Neiman, A.Ya., Pestereva, N.N., Sharafutdinov, A.R., et al., Conduction and transport

- numbers in metacomposites MeWO₄–WO₃ (Me Ca, Sr, Ba), *Russ. J. Electrochem.*, 2005, vol. 41. p. 598.]
- 10. Пестерева, Н.Н., Жукова, А.Ю., Нейман, А.Я. Числа переноса носителей и ионная проводимость эвтектических метакомпозитов {MeWO₄·xWO₃} (Me Sr, Ba). Электрохимия. 2007. Т. 43. С. 1379. [Pestereva, N.N., Zhukova, A.Yu., and Neiman, A.Ya., Transport numbers and ionic conduction of eutectic metacomposites {MeWO₄·xWO₃} (Me Sr, Ba), Russ. J. Electrochem., 2007, vol. 43, p. 1305.]
- 11. Партин, Г.С., Пестерева, Н.Н., Корона, Д.В., Нейман, А.Я. Влияние состава композитов {(100 - x)CaWO₄—xV₂O₅} и {(100 x)LaVO₄—xV₂O₅} на их электропроводность. Электрохимия. 2015. Т. 51. С. 1071. [Partin, G.S., Pestereva, N.N., Korona, D.V., and Neiman, A.Y., Effect of composition of {(100 - x)CaWO₄—xV₂O₅} and {(100 x)LaVO₄—xV₂O₅} composites on their conductivity Russ. J. Electrochem., 2015, vol. 51, p. 945.]
- 12. Knosinger, H. and Taglauer, E., Toward supported odxide catalysts via solid-solid wetting, *Catalysis*, 1993, vol. 10, p. 1.
- 13. Sawada, S., Thermal and electrical properties of tungsten oxide (WO₃), *J. Phys. Soc. Japan*, 1956, vol. 11, p. 1237.
- 14. Kofstad, P., *Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides.* N.Y.: Wiley-Interscience, 1972. p. 382.
- Guseva, A., Pestereva, N., Otcheskikh, D., and Kuznetsov, D., Electrical properties of CaWO₄–SiO₂ composites, *Solid State Ionics*, 2021. V. 364. P. 115626. https://doi.org/10.1016/j.ssi.2021.115626
- Technical Bulletin Fine Particles N 11, Basic Characteristics of Aerosil Fumed Silica, 4th ed. Essen: Evonik, 2003
- 17. Чеботин, В.Н., Перфильев, М.В. Электрохимия твердых электролитов, М.: Химия, 1978. 312 с. [Chebotin, V.N. and Perfilev, M.V., Electrochem. solid electrolytes (in Russian), Moscow: Khimiya, 1978. 312 р.]
- 18. Uvarov, N.F., Estimation of composites conductivity using a general mixing rule, *Solid State Ionics*, 2000, vol. 136–137, p. 1267.