Optimal solution for immunizing arbitrarily scheduled multiple liabilities
- Authors: Kurochkin S.V.1, Rodina V.A.1
-
Affiliations:
- HSE University
- Issue: Vol 59, No 2 (2023)
- Pages: 87-99
- Section: Articles
- URL: https://ogarev-online.ru/0424-7388/article/view/141418
- DOI: https://doi.org/10.31857/S042473880025861-6
- ID: 141418
Abstract
About the authors
Sergey Vladimirovich Kurochkin
HSE UniversityMoscow, Russia
Victoria Alekseevna Rodina
HSE UniversityRussia
References
- Бешенов С.В, Лапшин В.А. (2019). Параметрическая иммунизация процентного риска на основе моделей срочной структуры процентных ставок // Экономический журнал ВШЭ. Т. 23 (1). С. 9–31.
- Богачев В.И., Колесников А.В. (2012). Задача Монжа–Канторовича: достижения, связи и перспективы // Успехи математических наук. Т. 67. Вып. 5 (407). С. 3–110.
- Валландер С.С. (1973). Вычисление расстояния по Вассерштейну между распределениями вероятностей на прямой // Теория вероятностей и ее применения. Т. 18. Вып. 4. С. 824–827.
- Balbas A., Ibanez A. (1998). When can you immunize a bond portfolio? Journal of Banking and Finance, 22, 1571–1595.
- Balbas A., Ibanez A., Lopez S. (2002). Dispersion measures as immunization risk measures. Journal of Banking and Finance, 26 (6), 1229–1244.
- Bayliss C., Serra M., Nieto A., Juan A. (2020). Combining a matheuristic with simulation for risk management of stochastic assets and liabilities. Risks 8 (4), 131.
- Bierwag G. (1977). Immunization, duration, and the term structure of interest rates. Journal of Financial and Quantitative Analysis, 12 (5), 725–742.
- Bierwag G., Fooladi I., Roberts G. (1993). Designing an immunized portfolio: Is M-squared the key? Journal of Banking and Finance, 17, 1147–1170.
- Bierwag G., Kaufman G., Toevs A. (1983). Immunization strategies for funding multiple liabilities. Journal of Financial and Quantitative Analysis, 18 (1), 113–123.
- Chizat L. (2018). Unbalanced optimal transport: Dynamic and Kantorovich formulations. Journal of Functional Analysis, 274 (11), 3090–3123.
- De La Peña J.I., Iturricastillo I., Moreno R., Roman F., & Trigo E. (2021). Towards an immu-nization perfect model? International Journal of Finance & Economics, 26 (1), 1181–1196.
- Dutta G., Rao H., Basu S., Tiwari M. (2019). Asset liability management model with decision support system for life insurance companies: Computational results. Computers & Industrial Engineering, 128, 985–98.
- Fabozzi F.J., Fong H.G. (1985). Fixed income portfolio management. Appendix E: Derivation of risk immunization measures. Homewood Illinois: Dow Jones-Irwin.
- Fisher L., Weil R. (1971). Coping with the risk of interest rate fluctuations: Returns to bond-holders from naïve and optimal strategies. Journal of Business, 44 (4), 408–431.
- Fong G., Vasicek O. (1984). A risk minimizing strategy for portfolio immunization. Journal of Finance, 39 (5), 1541–1546.
- Ford P. (1991). Some Further Investigations into Cashflow Matching. AFIR Colloquium, Rome, Italy, 539–551.
- Ford P.E.B. (1991). Cashflow matching using modified linear programming. AFIR Colloquium, Brighton, United Kingdom, 3, 301–322.
- Gangbo W., Li W., Osher S., Puthawala M. (2019). Unnormalized Optimal transport. Journal of Computational Physics, 399, 108940.
- Hürlimann W. (2002). On immunization, stop-loss order and the maximum shiu measure. Insur-ance: Mathematics and Economics, 31, 315–325.
- Ingersoll J.Jr., Skelton J., Weil W. (1978). Duration forty years later. Journal of Financial and Quantitative Analysis, 13 (4), 627–650.
- Khang C. (1979). Bond immunization when short-term interest rates fluctuate more than long-term rates. Journal of Financial and Quantitative Analysis, 14 (5), 1085–1090.
- Kopa M., Rusý T. (2021). A decision-dependent randomness stochastic program for asset-liability management model with a pricing decision. Annals of Operations Research, 299, 241–271.
- Leibowitz M. (1986). The dedicated bond portfolio in pension funds – Part I: Motivations and ba-sics. Financial Analysts Journal, 42 (1), 68–75.
- Monge G. (1781). Mémoire sur la théorie des déblais et des remblais. Paris : De l'Imprimerie Royale.
- Montrucchio M., Peccati L. (1991). A note on shiu-fisher-weil immunization theorem. Insurance: Mathematics and Economics, 10, 125–131.
- Nawalkha S., Chambers D. (1996). An improved immunization strategy: M-absolute. Financial Analysts Journal, 52 (5), 69–76.
- Nawalkha S., Chambers D. (1997). The M-vector model: Derivation and testing of extensions to M-square. Journal of Portfolio Management, 23 (2), 92–98.
- Nawalkha S., Soto G., Zhang J. (2003). Generalized M-vector models for hedging interest rate risk. Journal of Banking and Finance, 27 (8), 1581–1604.
- Panaretos V., Zemel Y. (2019). Statistical aspects of wasserstein distances. Annual Review of Statistics and Its Application, 6, 405–431.
- Redington F. (1952). Review of the principles of life-office valuations. Journal of the Institute of Actuaries, 78 (3), 286–340.
- Rosenbloom E., Shiu E. (1990). The matching of assets with liabilities by goal programming. Managerial Finance, 16 (1), 23–26.
- Shiu E. (1987). On the Fisher–Weil immunization theorem. Insurance: Mathematics and Economics, 6, 259–266.
- Shiu E. (1990). On Redington’s theory of immunization. Insurance: Mathematics and Economics, 9, 171–175.
- Theobald M., Yallup P. (2009). Liability-driven investment: Multiple Liabilities and the question of the number of moments. European Journal of Finance, 16 (5), 413–435.
- Torres L., Pereira L., Amini H. (2021). A survey on optimal transport for machine learning: Theory and applications. arXiv: 2106.01963. doi: 10.48550/arXiv.2106.01963
- Van der Meer R., Smink M. (1993). Strategies and techniques for asset-liability management: An overview. Geneva Papers on Risk and Insurance, s and Practice, 18 (67), 144–157.
- Vanderhoof I. (1972). The interest rate assumption and the maturity structure of the assets of a life insurance company. Transactions of Society of Actuaries, 24 (69), 157–192.
- Weil R. (1973). Macaulay's duration: An appreciation. Journal of Business, 46 (4), 589–592.
