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Для двумерного волнового уравнения в цилиндрической области изучена первая гра-
ничная задача, установлен критерий единственности её решения, которое построено в
виде суммы ортогонального ряда. При обосновании сходимости ряда решена проблема
малых знаменателей от двух натуральных аргументов. Установлена оценка об отдели-
мости от нуля с соответствующей асимптотикой, что позволило доказать сходимость
ряда в классе регулярных решений и устойчивость решения задачи.
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1. ВВЕДЕНИЕ. ПОСТАНОВКА ЗАДАЧИ

Рассмотрим волновое уравнение

𝐿𝑢≡𝑢𝑡𝑡−𝑎2(𝑢𝑥𝑥+𝑢𝑦𝑦)−𝑏𝑢=0 (1)

в цилиндре 𝑄= {(𝑥, 𝑦, 𝑡) : (𝑥, 𝑦)∈𝐷, 0<𝑡<𝑇}, где 𝐷= {(𝑥, 𝑦) : 𝑥2+𝑦2< 𝑙2}; 𝑎> 0, 𝑏, 𝑇 > 0 и
𝑙 > 0 — заданные действительные постоянные, и поставим первую граничную задачу.

Требуется найти функцию 𝑢(𝑥, 𝑦, 𝑡), удовлетворяющую следующим условиям:

𝑢(𝑥, 𝑦, 𝑡)∈𝐶1(𝑄)∩𝐶2(𝑄); (2)

𝐿𝑢(𝑥, 𝑦, 𝑡)≡ 0, (𝑥, 𝑦, 𝑡)∈𝑄; (3)

𝑢(𝑥, 𝑦, 𝑡)
⃒⃒
𝑥2+𝑦2=𝑙2

=0, 0⩽ 𝑡⩽𝑇 ; (4)

𝑢(𝑥, 𝑦, 0)= 𝜏(𝑥, 𝑦), 𝑢(𝑥, 𝑦, 𝑇 )=𝜓(𝑥, 𝑦), (𝑥, 𝑦)∈𝐷, (5)

где 𝜏(𝑥, 𝑦) и 𝜓(𝑥, 𝑦) — заданные достаточно гладкие функции, удовлетворяющие условиям
согласования с граничным условием (4).

Известно, что задача Дирихле для уравнений гиперболического типа поставлена некор-
ректно. С.Л. Соболев показал [1], что исследование вопросов неустойчивых колебаний (ре-
зонансов колебаний в жидкости внутри тонкостенных баков ракет с собственными коле-
баниями) тесно связано с задачей Дирихле для волнового уравнения. В более известной
форме эта связь показана в книге В.И. Арнольда [2, с. 132]. Достаточно полный обзор
работ, посвящённых изучению задачи Дирихле для гиперболических уравнений, приведён в
монографии Б.И. Пташника [3, с. 89–95] и в работах [4; 5, с. 112–118] автора.
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Работы Р. Денчева [6–8] посвящены исследованию задачи Дирихле для уравнения (1) при
𝑏=0, 𝑎=1 с ненулевой правой частью и однородными условиями на границе области Ω, когда
Ω — эллипсоид, цилиндр с образующими, параллельными оси 𝑡, и параллелепипед. В них
также установлен критерий единственности и существования решения задачи в пространстве
Соболева 𝑊 1

2 (Ω) при определённых условиях на правую часть, связанных со сходимостью
числовых рядов, при этом возникающие малые знаменатели не изучены.

В работе [9] для многомерного уравнения с волновым оператором в цилиндрической об-
ласти 𝐷×(0, 𝑇 ) найдены условия

√
𝜆𝑘𝑇 ̸=𝑚𝜋, где 𝑘,𝑚∈N, при которых имеет место теорема

единственности решения задачи Дирихле. Здесь 𝜆𝑘 — собственные значения соответствующей
спектральной задачи в области 𝐷.

В монографии Б.И. Пташника [3, с. 95–101] также изучена задача Дирихле в (𝑝+1)-мер-
ном параллелепипеде 𝑄 = [0, 𝑇 ]×Π, где Π = {𝑥 ∈ 𝑅𝑝 : 0 ⩽ 𝑥𝑟 ⩽ 𝜋, 𝑟 = 1, 𝑝}, для строго ги-
перболического уравнения чётного порядка 2𝑛 с постоянными коэффициентами. Решение
задачи определяется 𝑝-мерным рядом Фурье. Установлен критерий единственности решения
в 𝐶2𝑛(𝑄). Для серии неравенств, выражающих оценку малых знаменателей с соответствую-
щей асимптотикой, приведено обоснование сходимости ряда в указанном классе. При этом
не показано для каких чисел вида 𝜋/𝑇 эти оценки имеют место, только отмечено, что
множество чисел 𝜋/𝑇 , для которых они не выполняются, есть множество нулевой меры
Лебега.

В статье В.П. Бурского [10] получено необходимое и достаточное условие тривиальной
разрешимости однородной задачи Дирихле в единичном шаре 𝐵 с центром в начале коор-
динат в пространстве 𝐶2(𝐵) для уравнения с комплексной постоянной 𝑎:

𝑢𝑥𝑥+𝑢𝑦𝑦−𝑎2𝑢𝑧𝑧 =0.

В работах С.А. Алдашева [11–14] изучены задача Дирихле и задача со смешанными
граничными условиями в цилиндрической области 𝑄 (где 𝑙 = 1, 𝑇 = 𝛼) для многомерных
гиперболических уравнений с волновым оператором; решения задач построены в виде суммы
ряда Фурье в сферической системе координат. Но из-за возникающих малых знаменателей
нельзя считать, что эти ряды сходятся в пространстве 𝐶1(𝑄)∩𝐶2(𝑄). При доказательстве
теорем единственности также появляются вопросы о равномерной сходимости используемых
рядов, так как они содержат малые знаменатели.

В данной статье в классе регулярных решений уравнения (1), т.е. удовлетворяющих
условиям (2) и (3), установлен критерий единственности решения задачи (2)–(5) и само
решение построено в явном виде — суммы ряда Фурье. При обосновании сходимости ряда
возникла проблема малых знаменателей, как в известных работах В.И. Арнольда [15, 16] и
В.В. Козлова [17], но от двух натуральных аргументов. В связи с этим установлены оценки
об отделимости от нуля малых знаменателей, на основании которых доказана сходимость
ряда в классе функций 𝐶2(𝑄) при некоторых условиях относительно функций 𝜏(𝑥, 𝑦) и
𝜓(𝑥, 𝑦), а также получены оценки об устойчивости решения.

2. КРИТЕРИЙ ЕДИНСТВЕННОСТИ РЕШЕНИЯ ЗАДАЧИ ДИРИХЛЕ

В цилиндрической системе координат 𝑥= 𝑟 cos𝜙, 𝑦 = 𝑟 sin𝜙, 𝑡= 𝑡, 0⩽ 𝑟 < 𝑙, 0⩽ 𝜙⩽ 2𝜋,
уравнение (1) примет вид

𝑢𝑟𝑟+
1

𝑟
𝑢𝑟+

1

𝑟2
𝑢𝜙𝜙+

𝑏

𝑎2
𝑢=

1

𝑎2
𝑢𝑡𝑡. (6)
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Разделив переменные 𝑢(𝑟, 𝜙, 𝑡)= 𝑣(𝑟, 𝜙)𝑇 (𝑡) в уравнении (6), получим относительно функции
𝑣(𝑟, 𝜙) следующую спектральную задачу:

𝑣𝑟𝑟+
1

𝑟
𝑣𝑟+

1

𝑟2
𝑣𝜙𝜙+𝜆

2𝑣=0, (7)

𝑣(𝑙, 𝜙)= 0, (8)

|𝑣(0, 𝜙)|<+∞, 𝑣(𝑟, 𝜙)= 𝑣(𝑟, 𝜙+2𝜋), (9)

где 𝜆2= 𝑏/𝑎2+𝜇2, 𝜇 — постоянная разделения переменных.
Решение задачи (7)–(9) аналогично [18, с. 215] будем искать в виде 𝑣(𝑟, 𝜙)=𝑅(𝑟)Φ(𝜙) и

получим две одномерные спектральные задачи:

Φ′′(𝜙)+𝑝2Φ(𝜙)= 0, 0⩽𝜙⩽ 2𝜋, (10)

Φ(𝜙)=Φ(𝜙+2𝜋), Φ′(𝜙)=Φ′(𝜙+2𝜋); (11)

𝑅′′(𝑟)+
1

𝑟
𝑅′(𝑟)+

(︂
𝜆2− 𝑝2

𝑟2

)︂
𝑅(𝑟)= 0, 0<𝑟< 𝑙, (12)

|𝑅(0)|<+∞, 𝑅(𝑙)= 0. (13)

Ненулевые периодические решения задачи (10) и (11) существуют лишь при целом 𝑝=𝑛
и определяются по формуле

Φ𝑛(𝜙)= 𝑎𝑛 cos(𝑛𝜙)+𝑏𝑛 sin(𝑛𝜙),

где 𝑎𝑛, 𝑏𝑛 — произвольные постоянные, 𝑛=0, 1, 2, . . . При 𝑝=𝑛 общее решение уравнения (12)
имеет вид

𝑅𝑛(𝑟)= 𝑐𝑛𝐽𝑛(𝜆𝑟)+𝑑𝑛𝑌𝑛(𝜆𝑟),

здесь 𝑐𝑛 и 𝑑𝑛 — произвольные постоянные, 𝐽𝑛(𝜆𝑟) и 𝑌𝑛(𝜆𝑟) — цилиндрические функции
первого и второго рода соответственно. Из первого условия в (13) следует, что 𝑑𝑛 = 0, а
второе условие даёт уравнение

𝐽𝑛(𝑞)= 0, 𝑞=𝜆𝑙,

которое, как известно, имеет счётное множество положительных корней 𝑞𝑛𝑚, 𝑛=0, 1, 2, . . . ,
𝑚=1, 2, . . . , и им соответствуют собственные значения

𝜆𝑛𝑚= 𝑞𝑛𝑚/𝑙, 𝑚=1, 2, . . . , 𝑛=0, 1, 2, . . . ,

и собственные функции ̃︀𝑅𝑛𝑚(𝑟)=𝐽𝑛(𝜆𝑛𝑚𝑟)=𝐽𝑛

(︁𝑞𝑛𝑚
𝑙
𝑟
)︁

спектральной задачи (12), (13).
Таким образом, спектральная задача (10), (11) имеет систему собственных функций

Φ𝑛(𝜙)=

{︂
1√
2𝜋
,

1√
𝜋
cos(𝑛𝜙),

1√
𝜋
sin(𝑛𝜙)

}︂
, (14)

ортонормированную, полную и образующую базис в пространстве 𝐿2(0, 2𝜋), а спектральная
задача (12), (13) — систему собственных функций

𝑅𝑛𝑚(𝑟)=
𝐽𝑛(𝜆𝑛𝑚𝑟)

‖𝐽𝑛(𝜆𝑛𝑚𝑟)‖𝐿2(0,𝑙)
=

√
2

𝑙

𝐽𝑛(𝜆𝑛𝑚𝑟)

|𝐽𝑛+1(𝑞𝑛𝑚)|
, (15)

полную и образующую ортонормированный базис в 𝐿2(0, 𝑙) с весом 𝑟.
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Тогда спектральная задача (7)–(9) имеет собственные значения 𝜆2𝑛𝑚=𝑏/𝑎2+𝜇2𝑛𝑚=(𝑞𝑛𝑚/𝑙)
2

и им соответствует с учётом (14) и (15) система собственных функций

𝑣𝑛𝑚(𝑟, 𝜙)=

{︂
1√
2𝜋
𝑅0𝑚(𝑟),

1√
𝜋
𝑅𝑛𝑚(𝑟) cos(𝑛𝜙),

1√
𝜋
𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)

}︂
, (16)

которая полна и образует ортонормированный базис в пространстве 𝐿2(𝐷) с весом 𝑟.
В дальнейшем будем считать, что 𝑏⩾ 0, так как если 𝑏 < 0, то, начиная с некоторых

номеров 𝑛>𝑛0 или 𝑚>𝑚0, правая часть 𝜆2𝑛𝑚= 𝑏/𝑎2+𝜇2𝑛𝑚 принимает только положительные
значения, т.е. знак коэффициента 𝑏, по существу, не влияет на полученные результаты.

Пусть 𝑢(𝑟, 𝜙, 𝑡) — решение задачи (2)–(5). На основании системы (16) введём функции

𝐴0𝑚(𝑡)=
1√
2𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅0𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙, (17)

𝐴𝑛𝑚(𝑡)=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙, (18)

𝐵𝑛𝑚(𝑡)=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙. (19)

Дифференцируя равенство (18) по 𝑡 два раза и учитывая уравнение (6), получаем

𝐴′′
𝑛𝑚(𝑡)=

1√
𝜋

¨

𝐷

𝑢𝑡𝑡(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

=
𝑎2√
𝜋

¨

𝐷

(︂
𝑢𝑟𝑟+

1

𝑟
𝑢𝑟+

1

𝑟2
𝑢𝜙𝜙

)︂
𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙+𝑏𝐴𝑛𝑚(𝑡)=𝐽1+𝐽2+𝑏𝐴𝑛𝑚(𝑡), (20)

где

𝐽1=
𝑎2√
𝜋

¨

𝐷

(︂
𝑢𝑟𝑟+

1

𝑟
𝑢𝑟

)︂
𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

𝑎2√
𝜋

2𝜋ˆ

0

cos(𝑛𝜙)

𝑙ˆ

0

(𝑟𝑢𝑟)
′
𝑟𝑅𝑛𝑚(𝑟) 𝑑𝑟 𝑑𝜙, (21)

𝐽2=
𝑎2√
𝜋

¨

𝐷

1

𝑟
𝑢𝜙𝜙𝑅𝑛𝑚(𝑟) cos(𝑛𝜙) 𝑑𝑟 𝑑𝜙=

𝑎2√
𝜋

𝑙ˆ

0

1

𝑟
𝑅𝑛𝑚(𝑟)

2𝜋ˆ

0

𝑢𝜙𝜙 cos(𝑛𝜙) 𝑑𝜙 𝑑𝑟. (22)

Вычислим внутренние интегралы в правых частях равенств (21) и (22):

𝑙ˆ

0

(𝑟𝑢𝑟)
′
𝑟𝑅𝑛𝑚(𝑟) 𝑑𝑟= 𝑟𝑢𝑟𝑅𝑛𝑚(𝑟)

⃒⃒𝑙
0
−

𝑙ˆ

0

𝑢𝑟𝑟𝑅
′
𝑛𝑚(𝑟) 𝑑𝑟=−

𝑙ˆ

0

𝑢𝑟𝑟𝑅
′
𝑛𝑚(𝑟) 𝑑𝑟=

= 𝑟𝑢𝑅′
𝑛𝑚(𝑟)

⃒⃒𝑙
0
+

𝑙ˆ

0

𝑢(𝑟𝑅′
𝑛𝑚(𝑟))′ 𝑑𝑟=−𝜆2𝑛𝑚

𝑙ˆ

0

𝑢𝑟𝑅𝑛𝑚(𝑟) 𝑑𝑟+𝑛2
𝑙ˆ

0

𝑢
𝑅𝑛𝑚(𝑟)

𝑟
𝑑𝑟,

2𝜋ˆ

0

𝑢𝜙𝜙 cos(𝑛𝜙) 𝑑𝜙=−𝑛2
2𝜋ˆ

0

𝑢 cos(𝑛𝜙) 𝑑𝜙.
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Подставив эти значения в (21) и (22), а затем (21) и (22) в равенство (20), получим

𝐴′′
𝑛𝑚(𝑡)+𝑎2𝜇2𝑛𝑚𝐴𝑛𝑚(𝑡)= 0. (23)

Общее решение уравнения (23) определяется по формуле

𝐴𝑛𝑚(𝑡)= 𝑎𝑛𝑚 cos(𝑎𝜇𝑛𝑚𝑡)+𝑏𝑛𝑚 sin(𝑎𝜇𝑛𝑚𝑡), (24)

где 𝑎𝑛𝑚 и 𝑏𝑛𝑚 — произвольные постоянные. Для их определения воспользуемся граничными
условиями (5):

𝐴𝑛𝑚(0)=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 0)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

=
1√
𝜋

¨

𝐷

𝜏(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=: 𝜏𝑛𝑚, (25)

𝐴𝑛𝑚(𝑇 )=
1√
𝜋

¨

𝐷

𝑢(𝑟, 𝜙, 𝑇 )𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=

=
1√
𝜋

¨

𝐷

𝜓(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=:𝜓𝑛𝑚. (26)

Подчинив общее решение (24) граничным условиям (25) и (26), найдём

𝑎𝑛𝑚= 𝜏𝑛𝑚, 𝑏𝑛𝑚=
1

sin(𝑎𝜇𝑛𝑚𝑇 )

(︀
𝜓𝑛𝑚−𝜏𝑛𝑚 cos(𝑎𝜇𝑛𝑚𝑇 )

)︀
при условии, что

Δ𝑛𝑚(𝑇 )= sin(𝑎𝜇𝑛𝑚𝑇 ) ̸=0 при всех 𝑛,𝑚∈N. (27)

Тогда

𝐴𝑛𝑚(𝑡)= 𝜏𝑛𝑚
sin(𝑎𝜇𝑛𝑚(𝑇 − 𝑡))

sin(𝑎𝜇𝑛𝑚𝑇 )
+𝜓𝑛𝑚

sin(𝑎𝜇𝑛𝑚𝑡)

sin(𝑎𝜇𝑛𝑚𝑇 )
. (28)

Продифференцировав равенство (19) два раза по 𝑡 с учётом уравнения (6), получим

𝐵′′
𝑛𝑚(𝑡)+𝑎2𝜇2𝑛𝑚𝐵𝑛𝑚(𝑡)= 0.

Отсюда (по аналогии с функцией 𝐴𝑛𝑚(𝑡)) найдём при выполнении условия (27)

𝐵𝑛𝑚(𝑡)= ̃︀𝜏𝑛𝑚 sin(𝑎𝜇𝑛𝑚(𝑇 − 𝑡))
sin(𝑎𝜇𝑛𝑚𝑇 )

+ ̃︀𝜓𝑛𝑚
sin(𝑎𝜇𝑛𝑚𝑡)

sin(𝑎𝜇𝑛𝑚𝑇 )
, (29)

где

̃︀𝜏𝑛𝑚=
1√
𝜋

¨

𝐷

𝜏(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙, (30)

̃︀𝜓𝑛𝑚=
1√
𝜋

¨

𝐷

𝜓(𝑟, 𝜙)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙. (31)

Теперь продифференцируем равенство (17) два раза по 𝑡 и аналогично на основании
уравнения (6) получим, что функция 𝐴0𝑚(𝑡) является решением дифференциального урав-
нения

𝐴′′
0𝑚(𝑡)+𝑎2𝜇20𝑚𝐴0𝑚(𝑡)= 0.
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Отсюда (по аналогии с функцией 𝐴𝑛𝑚(𝑡)) найдём

𝐴0𝑚(𝑡)= 𝜏0𝑚
sin(𝑎𝜇0𝑚(𝑇 − 𝑡))

sin(𝑎𝜇0𝑚𝑇 )
+𝜓0𝑚

sin(𝑎𝜇0𝑚𝑡)

sin(𝑎𝜇0𝑚𝑇 )
(32)

при условии sin(𝜇0𝑚𝑇 ) ̸=0 для всех 𝑚∈N, где

𝜏0𝑚=
1√
2𝜋

¨

𝐷

𝜏(𝑟, 𝜙)𝑅0𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙, (33)

𝜓𝑛𝑚=
1√
2𝜋

¨

𝐷

𝜓(𝑟, 𝜙)𝑅0𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙. (34)

Теперь докажем единственность решения задачи (2)–(5). Пусть 𝜏(𝑥, 𝑦) = 𝜓(𝑥, 𝑦) ≡ 0 и
выполнены условия (27) при всех 𝑚∈N и 𝑛∈N0=N∪{0}. Тогда в силу равенств (25), (26),
(30), (31), (33) и (34) все 𝜏𝑛𝑚 =0, ̃︀𝜏𝑛𝑚 =0, 𝜓𝑛𝑚 =0, ̃︀𝜓𝑛𝑚 =0 при 𝑛=0, 1, 2, . . . , 𝑚=1, 2, . . .
Отсюда и на основании формул (32), (29), (28) и (17)–(19) имеем равенства

¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) cos(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=0,
¨

𝐷

𝑢(𝑟, 𝜙, 𝑡)𝑅𝑛𝑚(𝑟) sin(𝑛𝜙)𝑟 𝑑𝑟 𝑑𝜙=0

при всех 𝑛=0, 1, 2, . . . , 𝑚=1, 2, . . . , 𝑡∈ [0, 𝑇 ]. Из этих равенств на оcновании полноты системы
функций (16) в пространстве 𝐿2(𝐷) с весом 𝑟 следует, что 𝑢(𝑟, 𝜙, 𝑡) = 0 почти всюду в 𝐷
при любом 𝑡∈ [0, 𝑇 ]. Поскольку в силу (2) функция 𝑢(𝑟, 𝜙, 𝑡) непрерывна в 𝑄, то 𝑢(𝑟, 𝜙, 𝑡)≡0
в 𝑄.

Пусть при некоторых 𝑛 = 𝑛0 или 𝑚 = 𝑚0 выражение Δ𝑛0𝑚(𝑇 ) = 0 или Δ𝑛𝑚0(𝑇 ) = 0.
Для определённости допустим, что Δ𝑛0𝑚(𝑇 )=0. Тогда однородная задача (2)–(5) (𝜏(𝑥, 𝑦)=
=𝜓(𝑥, 𝑦)≡ 0) имеет ненулевое решение

𝑢𝑛0𝑚(𝑟, 𝜙, 𝑡)= sin(𝑎𝜇𝑛0𝑚𝑡)
(︀
𝑎0𝑚𝑅0𝑚(𝑟)+𝑎𝑛0𝑚𝑅𝑛0𝑚(𝑟) cos(𝑛0𝜙)+𝑏𝑛0𝑚𝑅𝑛0𝑚(𝑟) sin(𝑛0𝜙)

)︀
, (35)

где 𝑎0𝑚, 𝑎𝑛0𝑚 и 𝑏𝑛0𝑚 — произвольные постоянные.
Рассмотрим вопрос о нулях выражения Δ𝑛𝑚(𝑇 ). Равенство

Δ𝑛𝑚(𝑇 )= sin(𝑎𝜇𝑛𝑚𝑇 )= 0

имеет место только тогда, когда

𝑇 =
𝜋𝑘

𝑎𝜇𝑛𝑚
, 𝑘∈N. (36)

Значит, Δ𝑛𝑚(𝑇 ) обращается в нуль, когда 𝑇 определяется по формуле (36).
Таким образом, установлен критерий единственности решения задачи (2)–(5).
Теорема 1. Если существует решение задачи (2)–(5), то оно единственно тогда и

только тогда, когда при всех 𝑛 и 𝑚 выполнены условия (27).

3. СУЩЕСТВОВАНИЕ РЕШЕНИЯ ЗАДАЧИ

При выполнении условий (27) решение задачи (2)–(5) определяется суммой ряда

𝑢(𝑟, 𝜙, 𝑡)=
1√
2𝜋

∞∑︁
𝑚=1

𝐴0𝑚(𝑡)𝑅0𝑚(𝑟)+
1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟), (37)
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где коэффициенты 𝐴0𝑚(𝑡), 𝐴𝑛𝑚(𝑡) и 𝐵𝑛𝑚(𝑡) находятся по формулам (32), (28) и (29) со-
ответственно. Поскольку Δ𝑛𝑚(𝑇 ) является знаменателем коэффициентов ряда (37) и, как
показано выше, уравнение sin(𝑎𝜇𝑛𝑚𝑇 )=0 имеет счётное множество нулей (36), то возникает
проблема малых знаменателей. В связи с этим следует установить оценки об отделимости
от нуля. Для упрощения в дальнейшем положим, что 𝑏=0. Выражение Δ𝑛𝑚(𝑇 ) при 𝑏=0
представим в следующем виде:

Δ𝑛𝑚(𝜈)= sin(𝜈𝑞𝑛𝑚), 𝜈= 𝑎𝑇/𝑙. (38)

Лемма 1. Если выполнено одно из следующих условий:
1) число 𝜈/2= 𝑝 натуральное и нечётное;
2) число 𝜈/2= 𝑝/𝑞 — дробно-рациональное и отношение (2𝑟−𝑝)/(2𝑞) — не целое число,

где 𝑟∈N0 и 0⩽ 𝑟 < 𝑞,
то существуют положительные постоянные 𝐶0 и 𝑚0 (𝑚0∈N) такие, что при всех 𝑚>𝑚0

справедлива оценка
|Δ𝑛𝑚(𝜈)|⩾𝐶0> 0. (39)

Доказательство. Для нулей 𝑞𝑛𝑚 функции Бесселя 𝐽𝑛(𝑞) при больши́х значениях 𝑚>𝑚0,
где 𝑚0 — достаточно большое натуральное число, справедлива асимптотическая формула
[19, с. 241]

𝑞𝑛𝑚=
𝜋

2

(︂
2𝑚+𝑛− 1

2

)︂
+𝑂((4𝑚+2𝑛−1)−1). (40)

Подстановка (40) в (38) даёт

Δ𝑛𝑚(𝜈)= sin
𝜈𝜋

2

(︂
2𝑚+𝑛− 1

2

)︂
+𝑂((4𝑚+2𝑛−1)−1), (41)

так как

sin𝑂((4𝑚+2𝑛−1)−1)≈𝑂((4𝑚+2𝑛−1)−1), cos𝑂((4𝑚+2𝑛−1)−1)≈ 1+𝑂((4𝑚+2𝑛−1)−1)

при больши́х 𝑚>𝑚0.
Пусть число 𝜈/2= 𝑝∈N и нечётное. Тогда из равенства (41) при всех 𝑚>𝑚0 и 𝑛∈N0

получим

|Δ𝑛𝑚(𝜈)|⩾
⃒⃒⃒⃒
sin

(︂
𝜋𝑝(2𝑚+𝑛)− 𝑝𝜋

2

)︂⃒⃒⃒⃒
−
⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
=

=

⃒⃒⃒⃒
sin

𝑝𝜋

2

⃒⃒⃒⃒
−
⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
=1−

⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
>

1

2
(42)

в силу ⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
<𝐶1<

1

2

при больши́х 𝑚.
Пусть 𝜈/2 = 𝑝/𝑞, 𝑝, 𝑞 ∈N, (𝑝, 𝑞) = 1, 𝑝/𝑞 ̸∈N. В этом случае разделим 𝑝(2𝑚+𝑛) на 𝑞 с

остатком: 𝑝(2𝑚+𝑛)= 𝑞𝑠+𝑟, 𝑠, 𝑟∈N0, 0⩽ 𝑟 < 𝑞. Тогда соотношение (41) примет вид

Δ𝑛𝑚(𝜈)= sin

(︂
𝑠𝜋+

𝑟𝜋

𝑞
− 𝑝𝜋

2𝑞

)︂
+𝑂((4𝑚+2𝑛−1)−1)= (−1)𝑠 sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂
+𝑂((4𝑚+2𝑛−1)−1).
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Если 𝑟= 0, то имеем случай 1) леммы. Тогда 1⩽ 𝑟⩽ 𝑞−1. Отсюда (поскольку отношение
(2𝑟−𝑝)/(2𝑞) — не целое число) следует, что

|Δ𝑛𝑚(𝜈)|⩾
⃒⃒⃒⃒
sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂⃒⃒⃒⃒
−
⃒⃒
𝑂((4𝑚+2𝑛−1)−1)

⃒⃒
⩾

⃒⃒⃒⃒
sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂⃒⃒⃒⃒
−𝐶1⩾𝐶2−𝐶1> 0, (43)

где

𝐶2= min
1⩽𝑟⩽𝑞−1

⃒⃒⃒⃒
sin

(︂
𝜋
2𝑟−𝑝
2𝑞

)︂⃒⃒⃒⃒
.

Тогда из (42) и (43) при условии 𝐶1<𝐶2 вытекает справедливость оценки (39).
Лемма 2. Пусть выполнено одно из условий леммы 1, тогда при всех 𝑚>𝑚0, 𝑛∈N0

и любом 𝑡∈ [0, 𝑇 ] справедливы оценки

|𝐴𝑛𝑚(𝑡)|⩽𝑀1

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|

)︀
, (44)

|𝐵𝑛𝑚(𝑡)|⩽𝑀1

(︀
|̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
, (45)

|𝐴′
𝑛𝑚(𝑡)|⩽𝑀2𝜇𝑛𝑚

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|

)︀
, |𝐵′

𝑛𝑚(𝑡)|⩽𝑀2𝜇𝑛𝑚
(︀
|̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
,

|𝐴′′
𝑛𝑚(𝑡)|⩽𝑀3𝜇

2
𝑛𝑚

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|

)︀
, |𝐵′′

𝑛𝑚(𝑡)|⩽𝑀3𝜇
2
𝑛𝑚

(︀
|̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
,

здесь и далее 𝑀𝑖 — положительные постоянные, зависящие от 𝑇, 𝑎 и 𝑙.
Справедливость этих оценок непосредственно следует из формул (28) и (29) на основании

неравенств (39).
Теперь формально из ряда (37) при 𝑏=0 почленным дифференцированием получим ряды

𝑢𝑡𝑡=
1√
2𝜋

∞∑︁
𝑚=1

𝐴′′
0𝑚(𝑡)𝑅0𝑚(𝑟)+

1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

(︀
𝐴′′

𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵′′
𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟),

𝑢𝜙𝜙=− 1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

𝑛2
(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟),

𝑢𝑟𝑟 =
1√
2𝜋

∞∑︁
𝑚=1

𝐴0𝑚(𝑡)𝑅′′
0𝑚(𝑟)+

1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚=1

(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅′′

𝑛𝑚(𝑟),

которые при любых (𝑟, 𝜙, 𝑡)∈𝑄 мажорируются соответственно числовыми рядами

4𝑀3√
2𝜋

∞∑︁
𝑚>𝑚0

𝜇20𝑚
(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
|𝑅0𝑚(𝑟)|+

+
𝑀3√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝜇2𝑛𝑚
(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
|𝑅𝑛𝑚(𝑟)|, (46)

𝑀1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝑛2
(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
|𝑅𝑛𝑚(𝑟)|, (47)

𝑀1√
2𝜋

∞∑︁
𝑚>𝑚0

(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
|𝑅′′

0𝑚(𝑟)|+

+
𝑀1√
𝜋

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
|𝑅′′

𝑛𝑚(𝑟)|. (48)
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Лемма 3. Пусть 0<𝑟0 ⩽ 𝑟⩽ 𝑙, где 𝑟0 — малая положительная фиксированная посто-
янная. Тогда при 𝑚>𝑚0 и любом фиксированном 𝑛∈N0 имеют место оценки

|𝑅𝑛𝑚(𝑟)|⩽𝑀4, (49)

|𝑅′
𝑛𝑚(𝑟)|⩽𝑀5𝜇𝑛𝑚, (50)

|𝑅′′
𝑛𝑚(𝑟)|⩽𝑀6𝜇

2
𝑛𝑚. (51)

Доказательство. На основании асимптотической формулы для функции Бесселя пер-
вого рода 𝐽𝜈(𝑧) при больши́х значениях аргумента 𝑧 [20, с. 98]

𝐽𝜈(𝑧)=

√︂
2

𝜋𝑧

[︂
cos

(︂
𝑧− 𝜈𝜋

2
− 𝜋

4

)︂
− 1

2𝑧
sin

(︂
𝑧− 𝜈𝜋

2
− 𝜋

4

)︂]︂
+𝑂(𝑧−5/2) (52)

имеем

|𝐽𝑛(𝜇𝑛𝑚𝑟)|⩽
√︂

2

𝜋𝑟0𝜇𝑛𝑚

(︂
1+

1

2𝑟0𝜇𝑛𝑚

)︂
⩽ 2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
, (53)

так как 1/(2𝑟0𝜇𝑛𝑚)< 1 при больши́х 𝑚.
Аналогично получим оценки

|𝐽𝑛+1(𝑞𝑛𝑚)|= |𝐽𝑛+1(𝑙𝜇𝑛𝑚)|⩽ 2

√︂
2

𝜋𝑙𝜇𝑛𝑚
, (54)

из которых следует оценка (49).
Теперь найдём производную

𝑅′
𝑛𝑚(𝑟)=

√
2

𝑙|𝐽𝑛+1(𝑞𝑛𝑚)|
𝜇𝑛𝑚𝐽

′
𝑛(𝑧), 𝑧=𝜇𝑛𝑚𝑟. (55)

Используя равенство

𝐽 ′
𝜈(𝑧)=

1

2
[𝐽𝜈−1(𝑧)−𝐽𝜈+1(𝑧)] (56)

и формулу (52), получаем для 𝐽 ′
𝑛(𝑧) при больши́х 𝑧 асимптотическую формулу

𝐽 ′
𝑛(𝑧)=

1

2

√︂
2

𝜋𝑧

[︂
cos

(︂
𝑧− 𝑛−1

2
𝜋− 𝜋

4

)︂
−cos

(︂
𝑧− 𝑛+1

2
𝜋− 𝜋

4

)︂]︂
+𝑂(𝑧−3/2)=

=

√︂
2

𝜋𝑧
cos

(︂
𝑧− 𝑛𝜋

2
+
𝜋

4

)︂
+𝑂(𝑧−3/2),

на основании которой, аналогично оценкам (53) и (54), находим

|𝐽 ′
𝑛(𝜇𝑛𝑚𝑟)|⩽ 2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
. (57)

Тогда из равенства (55) в силу оценок (57) и (54) следует оценка (50).
Из (12) вычислим вторую производную

𝐽 ′′
𝑛(𝜇𝑛𝑚𝑟)=−1

𝑟
𝐽 ′
𝑛(𝜇𝑛𝑚𝑟)+

(︂
𝑛2

𝑟2
−𝜇2𝑛𝑚

)︂
𝐽𝑛(𝜇𝑛𝑚𝑟). (58)

Отсюда с учётом оценок (53) и (57) имеем

|𝐽 ′′
𝑛(𝜇𝑛𝑚𝑟)|⩽

1

𝑟0
2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
+
𝑛2

𝑟20
2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
+𝜇2𝑛𝑚2

√︂
2

𝜋𝑟0𝜇𝑛𝑚
.

Из данного неравенства в силу (54) убеждаемся в справедливости оценки (51).
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Лемма 4. Пусть 0< 𝑟0 ⩽ 𝑟 ⩽ 𝑙. Тогда при больши́х 𝑛 и любом фиксированном 𝑚 ∈ N
справедливы оценки

|𝑅𝑛𝑚(𝑟)|⩽𝑀7, (59)

|𝑅′
𝑛𝑚(𝑟)|⩽𝑀8𝑛, (60)

|𝑅′′
𝑛𝑚(𝑟)|⩽𝑀9𝑛

2. (61)

Доказательство. Для получения этих оценок воспользуемся асимптотической формулой
Лангера при больши́х значениях порядка 𝑝 функции Бесселя [20, с. 103]

𝐽𝑝(𝑡)=
1

𝜋

√︂
1− arctg𝜔

𝜔
𝐾1/3(𝑧)+𝑂(𝑝−4/3), (62)

где
𝜔=

√︀
1−(𝑡/𝑝)2, 𝑡 < 𝑝, 𝑧= 𝑝(Arth𝜔−𝜔),

𝐾1/3(𝑧) — функция Макдональда.
Используя разложение в степенной ряд функции

arctg𝜔=𝜔− 𝜔3

3
+
𝜔5

5
− 𝜔7

7
+ . . . ,

оценим выражение
𝜔2

3

(︂
1− 3

5
𝜔2

)︂
< 1− arctg𝜔

𝜔
<
𝜔2

3
.

Отсюда при 0<𝜔< 1 будем иметь√︂
2

15
𝜔<

(︂
1− arctg𝜔

𝜔

)︂1/2

<
𝜔√
3
. (63)

Тогда из формулы (62) с учётом оценки (63) получим

|𝐽𝑝(𝑡)|⩽
𝜔

𝜋
√
3
𝐾1/3(𝑧), (64)

|𝐽𝑝(𝑡)|>
√︂

2

15

𝜔

𝜋
𝐾1/3(𝑧). (65)

Теперь на основании оценок (64) и (65) имеем

|𝐽𝑛(𝜇𝑛𝑚𝑟)|⩽
𝜔1

𝜋
√
3
𝐾1/3(𝑧1), (66)

|𝐽𝑛(𝑞𝑛𝑚)|⩾
√︂

2

15

𝜔2

𝜋
𝐾1/3(𝑧2), (67)

где

𝜔1=

√︂
1−
(︁𝑞𝑛𝑚𝑟
𝑛 𝑙

)︁2
, 𝑧1=𝑛(Arth𝜔1−𝜔1),

𝜔2=

√︂
1−
(︁ 𝑞𝑛𝑚
𝑛+1

)︁2
, 𝑧2=(𝑛+1)(Arth𝜔2−𝜔2).

Из неравенств (66) и (67) следует оценка (59), так как 𝜔1≈𝜔2 при больши́х 𝑛.
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На основании формул (55) и (56) оценим производную 𝑅′
𝑛𝑚(𝑟):

|𝑅′
𝑛𝑚(𝑟)|⩽ 𝑞𝑛𝑚√

2𝑙2|𝐽𝑛+1(𝑞𝑛𝑚)|
(︀
|𝐽𝑛−1(𝜇𝑛𝑚𝑟)|+ |𝐽𝑛+1(𝜇𝑛𝑚𝑟)|

)︀
.

Отсюда с учётом оценок (66) и (67) получим (60).
В силу равенства (58) на основании (59) и (60) убеждаемся в справедливости оценки (61).
Замечание. Отметим, что функция 𝑅𝑛𝑚(𝑟) и её производные 𝑅′

𝑛𝑚(𝑟), 𝑅′′
𝑛𝑚(𝑟), начиная с

некоторого номера 𝑛, при 𝑟→0 стремятся к нулю. Поэтому в леммах 3 и 4 оценки (49)–(51)
и (59)–(61) получены при 𝑟⩾ 𝑟0> 0.

В силу лемм 3 и 4 ряды (46)–(48) мажорируются комбинацией рядов

𝑀10

∞∑︁
𝑚>𝑚0

𝑚2
(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
, 𝑀11

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝑛2
(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
,

𝑀12

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝜇2𝑛𝑚
(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀
. (68)

Обозначим через 𝐶4,4(𝐷) множество функций 𝑓(𝑟, 𝜙), имеющих непрерывные смешанные
производные по 𝑟 и 𝜙 до четвёртого порядка включительно в замкнутой области 𝐷.

Лемма 5. Пусть 𝜏(𝑟, 𝜙), 𝜓(𝑟, 𝜙)∈𝐶4,4(𝐷) и 𝜏 (0,𝑖)(𝑟, 0)= 𝜏 (0,𝑖)(𝑟, 2𝜋), 𝑖=0, 3, 𝜏 (𝑘,4)(0, 𝜙)=0,
𝑘 = 0, 3, 𝜓(0,𝑖)(𝑟, 0) = 𝜓(0,𝑖)(𝑟, 2𝜋), 𝑖= 0, 3, 𝜓(𝑘,4)(0, 𝜙) = 0, 𝑘 = 0, 3. Тогда коэффициенты 𝜏𝑛𝑚,̃︀𝜏𝑛𝑚, 𝜓𝑛𝑚, ̃︀𝜓𝑛𝑚 при 𝜇𝑛𝑚→+∞ имеют оценки

𝜏𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
, ̃︀𝜏𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
, 𝜓𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
, ̃︀𝜓𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
.

Доказательство. Рассмотрим коэффициенты 𝜏𝑛𝑚, 𝜓𝑛𝑚, ̃︀𝜏𝑛𝑚 и ̃︀𝜓𝑛𝑚, определённые по
формулам (25), (26), (30) и (31) соответственно. Представим 𝜏𝑛𝑚 в следующем виде:

𝜏𝑛𝑚=
1√
𝜋

𝑙ˆ

0

𝑅𝑛𝑚(𝜇𝑛𝑚𝑟)𝐼(𝑟)𝑟 𝑑𝑟, (69)

где

𝐼(𝑟)=

2𝜋ˆ

0

𝜏(𝑟, 𝜙) cos(𝑛𝜙) 𝑑𝜙.

По условию 𝜏 ′𝜙(𝑟, 0) = 𝜏 ′𝜙(𝑟, 2𝜋) и 𝜏 ′′′𝜙 (𝑟, 0) = 𝜏 ′′′𝜙 (𝑟, 2𝜋), тогда интеграл 𝐼(𝑟) с помощью четы-
рёхкратного интегрирования по частям можно преобразовать к виду

𝐼(𝑟)=
1

𝑛4

2𝜋ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙) cos(𝑛𝜙) 𝑑𝜙. (70)

Теперь интеграл (69) с учётом представления (70) запишем как

𝜏𝑛𝑚=

√
2

𝑙
√
𝜋|𝐽𝑛+1(𝑞𝑛𝑚)|𝑛4

2𝜋ˆ

0

𝐽(𝜙) cos(𝑛𝜙) 𝑑𝜙, (71)

где

𝐽(𝜙)=

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟. (72)
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Заметим, что функция 𝑋𝑛(𝑟)=𝑟
−𝑛𝐽𝑛(𝜉), 𝜉=𝜇𝑛𝑚𝑟, является решением дифференциального

уравнения

𝑋 ′′
𝑛(𝑟)+

2𝑛+1

𝑟
𝑋 ′

𝑛(𝑟)+𝜇
2
𝑛𝑚𝑋𝑛(𝑟)= 0. (73)

Тогда интеграл (72) с учётом уравнения (73) преобразуем следующим образом:

𝐽(𝜙)=

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)𝑋𝑛(𝑟)𝑟
𝑛+1 𝑑𝑟=− 1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)

[︂
𝑋 ′′

𝑛(𝑟)+
2𝑛+1

𝑟
𝑋 ′

𝑛(𝑟)

]︂
𝑟𝑛+1 𝑑𝑟=

=− 1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (4)𝜙 (𝑟, 𝜙)
[︀
(𝑟𝑛+1𝑋 ′

𝑛(𝑟))
′+𝑛𝑟𝑛𝑋 ′

𝑛(𝑟)
]︀
𝑑𝑟=

=− 1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (2,4)𝑟,𝜙 (𝑟,𝜙)𝑟𝑛+1𝑋𝑛(𝑟) 𝑑𝑟−
1

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (1,4)𝑟,𝜙 (𝑟,𝜙)𝑟𝑛𝑋𝑛(𝑟) 𝑑𝑟+
𝑛2

𝜇2𝑛𝑚

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟,𝜙)𝑟𝑛−1𝑋𝑛(𝑟) 𝑑𝑟=

=− 1

𝜇2𝑛𝑚
𝐽1−

1

𝜇2𝑛𝑚
𝐽2+

𝑛2

𝜇2𝑛𝑚
𝐽3, (74)

где

𝐽1=

𝑙ˆ

0

𝜏 (2,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛+1𝑋𝑛(𝑟) 𝑑𝑟, 𝐽2=

𝑙ˆ

0

𝜏1(𝑟, 𝜙)𝑟
𝑛+1𝑋𝑛(𝑟) 𝑑𝑟, 𝐽3=

𝑙ˆ

0

𝜏2(𝑟, 𝜙)𝑟
𝑛+1𝑋𝑛(𝑟) 𝑑𝑟,

𝜏1(𝑟, 𝜙)=
𝜏
(1,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟
, 𝜏2(𝑟, 𝜙)=

𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟2
.

Аналогично интегралу 𝐽(𝜙) по формуле (74) преобразуем интегралы 𝐽𝑖, 𝑖=1, 2:

𝐽𝑖=− 1

𝜇2𝑛𝑚
𝐽𝑖1−

1

𝜇2𝑛𝑚
𝐽𝑖2+

𝑛2

𝜇2𝑛𝑚
𝐽𝑖3, (75)

где

𝐽11=

𝑙ˆ

0

𝜏 (4,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛+1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 (4,4)𝑟,𝜙 (𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽12=

𝑙ˆ

0

𝜏 (3,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏
(3,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽13=

𝑙ˆ

0

𝜏 (2,4)𝑟,𝜙 (𝑟, 𝜙)𝑟𝑛−1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏
(2,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟2
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽21=

𝑙ˆ

0

𝜏 ′′1𝑟(𝑟, 𝜙)𝑟
𝑛+1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 ′′1𝑟(𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽22=

𝑙ˆ

0

𝜏 ′1𝑟(𝑟, 𝜙)𝑟
𝑛𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 ′1𝑟(𝑟, 𝜙)

𝑟
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟,

𝐽23=

𝑙ˆ

0

𝜏1(𝑟, 𝜙)𝑟
𝑛−1𝑋𝑛(𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏1(𝑟, 𝜙)

𝑟2
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟.
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Интеграл 𝐽3 преобразуем следующим образом:

𝐽3=

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−1𝐽𝑛(𝜇𝑛𝑚𝑟) 𝑑𝑟=

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−𝑛−2𝑟𝑛+1𝐽𝑛(𝜇𝑛𝑚𝑟) 𝑑𝑟=

=
𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)

𝑟
𝐽𝑛+1(𝜇𝑛𝑚𝑟)

⃒⃒⃒𝑙
0
− 1

𝜇𝑛𝑚

𝑙ˆ

0

𝑑
[︁
𝑟−𝑛−2𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)

]︁
𝑟𝑛+1𝐽𝑛+1(𝜇𝑛𝑚𝑟) 𝑑𝑟=

=− 1

𝜇𝑛𝑚

𝑙ˆ

0

𝜏 (1,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−1𝐽𝑛+1(𝜇𝑛𝑚𝑟) 𝑑𝑟+
𝑛+2

𝜇𝑛𝑚

𝑙ˆ

0

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−2𝐽𝑛+1(𝜇𝑛𝑚𝑟) 𝑑𝑟=

=− 1

𝜇𝑛𝑚
𝐽31+

𝑛+2

𝜇𝑛𝑚
𝐽32. (76)

После подстановки (75) и (76) в равенство (74) получим

𝐽(𝜙)=
1

𝜇4𝑛𝑚

(︀
𝐽11+𝐽12+𝐽21+𝐽22

)︀
− 𝑛2

𝜇4𝑛𝑚

(︀
𝐽13+𝐽23

)︀
− 𝑛2

𝜇3𝑛𝑚
𝐽31+

𝑛2(𝑛+2)

𝜇3𝑛𝑚
𝐽32. (77)

Если 𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)∈𝐶4[0, 𝑙] и 𝜏

(𝑘,4)
𝑟,𝜙 (0, 𝜙)= 0, 𝑘=0, 3, то справедливы представления

𝜏 (0,4)𝑟,𝜙 (𝑟, 𝜙)=
𝜏
(4,4)
𝑟,𝜙 (𝜃, 𝜙)𝑟4

4!
, 0<𝜃<𝑟,

𝜏 (1,4)𝑟,𝜙 (𝑟, 𝜙)=
𝜏
(4,4)
𝑟,𝜙 (𝜃, 𝜙)𝑟3

3!
, 𝜏 (2,4)𝑟,𝜙 (𝑟, 𝜙)=

𝜏
(4,4)
𝑟,𝜙 (𝜃, 𝜙)𝑟2

2!
, 𝜏 (3,4)𝑟,𝜙 (𝑟, 𝜙)= 𝜏 (4,4)𝑟,𝜙 (𝜃, 𝜙)𝑟.

В силу этого в интегралах 𝐽31 и 𝐽32 функции 𝜏
(0,4)
𝑟,𝜙 (𝑟, 𝜙)𝑟−5/2, 𝜏 (1,4)𝑟,𝜙 (𝑟, 𝜙)𝑟−3/2 непрерывно

дифференцируемы на [0, 𝑙], поэтому на данном промежутке имеют полную ограниченную
вариацию, т.е. конечное изменение. С учётом теоремы из [21, с. 653] интегралы 𝐽31 и 𝐽32
при 𝜇𝑛𝑚→∞ имеют оценку

𝐽31=𝑂(𝜇−3/2
𝑛𝑚 ), 𝐽32=𝑂(𝜇−3/2

𝑛𝑚 ). (78)

В интегралах 𝐽1𝑖, 𝑖 = 1, 2, 3, подынтегральные функции 𝜏
(4,4)
𝑟,𝜙 (𝑟, 𝜙), 𝜏

(3,4)
𝑟,𝜙 (𝑟, 𝜙)𝑟−1 и

𝜏
(2,4)
𝑟,𝜙 (𝑟, 𝜙)𝑟−2 непрерывны на отрезке [0, 𝑙]. Тогда в силу теоремы Юнга [21, с. 654] эти

интегралы при 𝜇𝑛𝑚→∞ имеют оценку

𝐽1𝑖=𝑂(𝜇−1/2
𝑛𝑚 ). (79)

Теперь рассмотрим интегралы 𝐽2𝑖, 𝑖 = 1, 2, 3. В них функции 𝜏 ′′1𝑟(𝑟, 𝜙), 𝜏 ′1𝑟(𝑟, 𝜙)𝑟
−1 и

𝜏1𝑟(𝑟, 𝜙)𝑟
−2 также непрерывны на отрезке [0, 𝑙], поэтому справедливы оценки

𝐽2𝑖=𝑂(𝜇−1/2
𝑛𝑚 ), 𝜇𝑛𝑚→∞. (80)

Тогда из представления (71) с учётом равенства (77) и оценок (78)–(80) получим

𝜏𝑛𝑚=𝑂

(︂
1

𝑛𝜇4𝑛𝑚

)︂
.

Аналогично из формул (26), (30) и (31) следуют остальные оценки. Лемма доказана.
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Числовые ряды (68) в силу формулы (40) мажорируются соответственно сходящимися
рядами

𝑀13

∞∑︁
𝑚>𝑚0

1

𝑚2
, 𝑀14

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

𝑛

(4𝑚+2𝑛−1)4
, 𝑀15

∞∑︁
𝑛=1

∞∑︁
𝑚>𝑚0

1

𝑛(4𝑚+2𝑛−1)2
.

Если для чисел 𝜈 из леммы 1 при некоторых 𝑚=𝑚1,𝑚2, . . . ,𝑚𝑠⩽𝑚0, где 1⩽𝑚1<𝑚2<. . .
. . . <𝑚𝑠, Δ𝑛𝑚𝑖(𝜈)=0, то для разрешимости задачи (2)–(5) необходимо и достаточно, чтобы
выполнялись условия

𝜏𝑛𝑚𝑖 =𝜓𝑛𝑚𝑖 =0, ̃︀𝜏𝑛𝑚𝑖 =
̃︀𝜓𝑛𝑚𝑖 =0, 𝑖=1, 𝑠. (81)

В этом случае решение задачи (2)–(5) определяется в виде суммы ряда:

𝑢(𝑟, 𝜙, 𝑡)=
1√
2𝜋

(︃
𝑚1−1∑︁
𝑚=1

+

𝑚2−1∑︁
𝑚=𝑚1+1

+ . . .+

𝑚𝑠−1∑︁
𝑚=𝑚𝑠−1+1

+

∞∑︁
𝑚=𝑚𝑠+1

)︃
𝐴0𝑚(𝑡)𝑅0𝑚(𝑟)+

+
1√
𝜋

∞∑︁
𝑛=1

(︃
𝑚1−1∑︁
𝑚=1

+

𝑚2−1∑︁
𝑚=𝑚1+1

+ . . .+

𝑚𝑠−1∑︁
𝑚=𝑚𝑠−1+1

+
∞∑︁

𝑚=𝑚𝑠+1

)︃
×

×
(︀
𝐴𝑛𝑚(𝑡) cos(𝑛𝜙)+𝐵𝑛𝑚(𝑡) sin(𝑛𝜙)

)︀
𝑅𝑛𝑚(𝑟)+

𝑠∑︁
𝑖=1

𝐶𝑛𝑚𝑖𝑢𝑛𝑚𝑖(𝑟, 𝜙, 𝑡), (82)

здесь 𝑢𝑛𝑚𝑖(𝑟, 𝜙, 𝑡) определяются по формуле (35), где 𝑚0 нужно заменить на 𝑚𝑖, 𝐶𝑛𝑚𝑖 —
произвольные постоянные; если в конечных суммах в правой части (82) верхний предел
меньше нижнего, то их следует считать нулями.

Таким образом, доказана следующая
Теорема 2. Пусть выполнены условия лемм 1 и 5. Тогда если Δ𝑛𝑚(𝜈) ̸= 0 при всех

𝑚=1,𝑚0, то задача (2)–(5) однозначно разрешима и это решение определяется рядом (37);
если Δ𝑛𝑚(𝜈)=0 при некоторых 𝑚=𝑚1,𝑚2, . . . ,𝑚𝑠⩽𝑚0, то задача (2)–(5) разрешима только
тогда, когда выполнены условия (81) и решение определяется рядом (82).

Отметим, что выполнения условия Δ𝑛𝑚(𝜈) ̸= 0 при 𝑚 = 1,𝑚0 можно добиться, если
𝜈 ̸=𝜋𝑘/𝑞𝑛𝑚 (в силу формулы (36) при 𝑏=0).

4. УСТОЙЧИВОСТЬ РЕШЕНИЯ ЗАДАЧИ

Рассмотрим следующие нормы:

‖𝑢(𝑟, 𝜙, 𝑡)‖𝐿2(𝐷)=
¨

𝐷

𝑢2(𝑟, 𝜙, 𝑡)𝑟 𝑑𝑟 𝑑𝜙, ‖𝑢(𝑟, 𝜙, 𝑡)‖𝐶(𝑄)= max
𝑟,𝜙,𝑡∈𝑄

|𝑢(𝑟, 𝜙, 𝑡)|,

‖𝑓 (2,2)𝑟,𝜙 (𝑟, 𝜙)‖𝐿2(𝐷)=
¨

𝐷

(︀
𝑓 (2,2)𝑟,𝜙 (𝑟, 𝜙)

)︀2
𝑟 𝑑𝑟 𝑑𝜙, ‖𝑔(2,2)𝑟,𝜙 (𝑟, 𝜙)‖2

𝐶(𝐷)
= max

𝑟,𝜙∈𝐷
|𝑔(2,2)𝑟,𝜙 (𝑟, 𝜙)|.

Теорема 3. Пусть выполнены условия теоремы 2 и Δ𝑛𝑚(𝜈) ̸= 0 при 𝑚= 1,𝑚0. Тогда
для решения (37) задачи (2)–(5) справедливы оценки

‖𝑢(𝑟, 𝜙, 𝑡)‖𝐿2(𝐷)⩽𝑀16

(︀
‖𝜏(𝑟, 𝜙)‖𝐿2(𝐷)+‖𝜓(𝑟, 𝜙)‖𝐿2(𝐷)

)︀
, (83)

‖𝑢(𝑟, 𝜙, 𝑡)‖𝐶(𝑄)⩽𝑀17

(︀⃦⃦
𝜏 (2,2)𝑟,𝜙 (𝑟, 𝜙)

⃦⃦
𝐶(𝐷)

+
⃦⃦
𝜓(2,2)
𝑟,𝜙 (𝑟, 𝜙)

⃦⃦
𝐶(𝐷)

)︀
. (84)
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Доказательство. Построенная система собственных функций (16) ортонормирована в
пространстве 𝐿2(𝐷) с весом 𝑟. Тогда из формулы (37) на основании оценок (44), (45) и (49)
будем иметь

‖𝑢(𝑟, 𝜙, 𝑡)‖2𝐿2(𝐷)=
∞∑︁

𝑚=1

𝐴2
0𝑚(𝑡)+

∞∑︁
𝑛,𝑚=1

𝐴2
𝑛𝑚(𝑡)+𝐵2

𝑛𝑚(𝑡)⩽

⩽ 2𝑀2
1𝑀

2
4

[︃ ∞∑︁
𝑚=1

(︀
|𝜏0𝑚|2+ |𝜓0𝑚|2

)︀
+

∞∑︁
𝑛,𝑚=1

(︀
|𝜏𝑛𝑚|2+ |̃︀𝜏𝑛𝑚|2+ |𝜓𝑛𝑚|2+ | ̃︀𝜓𝑛𝑚|2

)︀]︃
=

=2𝑀2
1𝑀

2
4

(︀
‖𝜏(𝑟, 𝜙)‖2𝐿2(𝐷)+‖𝜓(𝑟, 𝜙)‖2𝐿2(𝐷)

)︀
.

Отсюда получим оценку (83).
Пусть (𝑟, 𝜙, 𝑡) — произвольная точка 𝑄. Тогда из формулы (37) с учётом оценок (44), (45)

и (49) имеем

|𝑢(𝑟, 𝜙, 𝑡)|⩽𝑀1𝑀4

[︃ ∞∑︁
𝑚=1

(︀
|𝜏0𝑚|+ |𝜓0𝑚|

)︀
+

∞∑︁
𝑛,𝑚=1

(︀
|𝜏𝑛𝑚|+ |𝜓𝑛𝑚|+ |̃︀𝜏𝑛𝑚|+ | ̃︀𝜓𝑛𝑚|

)︀]︃
. (85)

Далее на основании рассуждений, приведённых при доказательстве леммы 5, коэффи-
циент 𝜏𝑛𝑚 представим в виде

𝜏𝑛𝑚=−
√
2

𝑙
√
𝜋|𝐽𝑛+1(𝑞𝑛𝑚)|𝑛2

2𝜋ˆ

0

𝐽(𝜙) cos(𝑛𝜙) 𝑑𝜙,

где

𝐽(𝜙)=

𝑙ˆ

0

𝜏 (0,2)𝑟,𝜙 (𝑟, 𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟=− 1

𝜇2𝑛𝑚

(︀
𝐽 ′
1+𝐽

′
2−𝑛2𝐽 ′

3

)︀
,

𝐽 ′
1=

𝑙ˆ

0

𝜏 (2,2)𝑟,𝜙 (𝑟,𝜙)𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟, 𝐽 ′
2=

𝑙ˆ

0

𝜏
(1,2)
𝑟,𝜙 (𝑟,𝜙)

𝑟
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟, 𝐽 ′

3=

𝑙ˆ

0

𝜏
(0,2)
𝑟,𝜙 (𝑟,𝜙)

𝑟2
𝐽𝑛(𝜇𝑛𝑚𝑟)𝑟 𝑑𝑟.

Если 𝜏
(0,2)
𝑟,𝜙 (𝑟, 𝜙)∈𝐶2[0, 𝑙] и 𝜏

(0,2)
𝑟,𝜙 (0, 𝜙)= 𝜏 (1,2)(0, 𝜙)=0, то функции 𝜏

(1,2)
𝑟,𝜙 (𝑟, 𝜙)𝑟−1= 𝜏

(2,2)
𝑟,𝜙 (𝜃, 𝜙),

𝜏
(0,2)
𝑟,𝜙 (𝑟, 𝜙)= 𝜏

(2,2)
𝑟,𝜙 (𝜃, 𝜙)/2, 0<𝜃<𝑟, непрерывны на отрезке [0, 𝑙], тогда

|𝜏𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
|𝜏 (2,2)𝑛𝑚 |,

где
𝜏 (2,2)𝑛𝑚 =

1√
𝜋

¨

𝐷

𝜏 (2,2)𝑟,𝜙 (𝑟, 𝜙) cos(𝑛𝜙)𝑅𝑛𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙. (86)

Аналогично получим оценки

|̃︀𝜏𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
|̃︀𝜏 (2,2)𝑛𝑚 |,

̃︀𝜏 (2,2)𝑛𝑚 =
1√
𝜋

¨

𝐷

𝜏 (2,2)𝑟,𝜙 (𝑟, 𝜙) sin(𝑛𝜙)𝑅𝑛𝑚(𝑟)𝑟 𝑑𝑟 𝑑𝜙, (87)

|𝜓𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
|𝜓(2,2)

𝑛𝑚 |, | ̃︀𝜓𝑛𝑚|⩽𝑀18

𝜇2𝑛𝑚
| ̃︀𝜓(2,2)

𝑛𝑚 |,

где 𝜓
(2,2)
𝑛𝑚 и ̃︀𝜓(2,2)

𝑛𝑚 определяются по формулам (86) и (87), но с заменой 𝜏(𝑟, 𝜙) на 𝜓(𝑟, 𝜙).
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Теперь, продолжая оценку (85), будем иметь

|𝑢(𝑟, 𝜙, 𝑡)|⩽𝑀19

[︃ ∞∑︁
𝑚=1

1

𝜇20𝑚

(︀
|𝜏 (2,2)0𝑚 |+ |𝜓(2,2)

0𝑚 |
)︀
+

∞∑︁
𝑛,𝑚=1

1

𝜇2𝑛𝑚

(︀
|𝜏 (2,2)𝑛𝑚 |+ |̃︀𝜏 (2,2)𝑛𝑚 |+ |𝜓(2,2)

𝑛𝑚 |+ | ̃︀𝜓(2,2)
𝑛𝑚 |

)︀]︃
.

Отсюда, используя неравенство Буняковского, получаем

|𝑢(𝑟, 𝜙, 𝑡)|⩽𝑀20

{︃(︃ ∞∑︁
𝑚=1

1

𝜇40𝑚

)︃1/2[︃(︃ ∞∑︁
𝑚=1

|𝜏 (2,2)0𝑚 |2
)︃1/2

+

(︃ ∞∑︁
𝑚=1

|𝜓(2,2)
0𝑚 |2

)︃1/2]︃
+

+

(︃ ∞∑︁
𝑛,𝑚=1

1

𝜇4𝑛𝑚

)︃1/2[︃(︃
2

∞∑︁
𝑛,𝑚=1

(︀
|𝜏 (2,2)𝑛𝑚 |2+ |̃︀𝜏 (2,2)𝑛𝑚 |2

)︀)︃1/2
+

(︃
2

∞∑︁
𝑛,𝑚=1

(︀
|𝜓(2,2)

𝑛𝑚 |2+ | ̃︀𝜓(2,2)
𝑛𝑚 |2

)︀)︃1/2]︃}︃
⩽

⩽𝑀21

[︃(︃ ∞∑︁
𝑚=1

|𝜏 (2,2)0𝑚 |2
)︃1/2

+

(︃ ∞∑︁
𝑛,𝑚=1

(︀
|𝜏 (2,2)𝑛𝑚 |2+ |̃︀𝜏 (2,2)𝑛𝑚 |2

)︀)︃1/2
+

+

(︃ ∞∑︁
𝑚=1

|𝜓(2,2)
0𝑚 |2

)︃1/2
+

(︃ ∞∑︁
𝑛,𝑚=1

(︀
|𝜓(2,2)

𝑛𝑚 |2+ | ̃︀𝜓(2,2)
𝑛𝑚 |2

)︀)︃1/2]︃
⩽

⩽𝑀21

√
2

[︃(︃ ∞∑︁
𝑚=1

|𝜏 (2,2)0𝑚 |2+
∞∑︁

𝑛,𝑚=1

(︀
|𝜏 (2,2)𝑛𝑚 |2+ |̃︀𝜏 (2,2)𝑛𝑚 |2

)︀)︃1/2
+

+

(︃ ∞∑︁
𝑚=1

|𝜓(2,2)
0𝑚 |2+

∞∑︁
𝑛,𝑚=1

(︀
|𝜓(2,2)

𝑛𝑚 |2+ | ̃︀𝜓(2,2)
𝑛𝑚 |2

)︀)︃1/2]︃
=

=
√
2𝑀21

(︀
‖𝜏 (2,2)(𝑟, 𝜙)‖𝐿2(𝐷)+‖𝜓(2,2)(𝑟, 𝜙)‖𝐿2(𝐷)

)︀
⩽𝑀22

(︀
‖𝜏 (2,2)(𝑟, 𝜙)‖𝐶(𝐷)+‖𝜓(2,2)(𝑟, 𝜙)‖𝐶(𝐷)

)︀
.

Из последнего неравенства непосредственно следует оценка (84).
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DIRICHLET PROBLEM FOR A TWO-DIMENSIONAL WAVE EQUATION
IN A CYLINDRICAL DOMAIN

© 2025 / K. B. Sabitov

Samara State Technical University, Russia
Sterlitamak branch of Ufa University of Science and Technology, Russia

e-mail: sabitov_fmf@mail.ru

In this work, the first boundary value problem is studied for a two-dimensional wave equation in a
cylindrical domain. A uniqueness criterion has been established. The solution is constructed as the sum
of an orthogonal series. When justifying the convergence of a series, the problem of small denominators
from two natural arguments arose for the first time. An estimate for separation from zero with the
corresponding asymptotics was established, which made it possible to prove the convergence of the
series in the class of regular solutions and the stability of the solution.

Keywords: wave equation, Dirichlet problem, uniqueness criterion, existence, stability, series, small
denominators
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