Электромагнитная прозрачность магнитной гетероструктуры в условиях многоволновой интерференции

 $O.\,C.\,C$ ухорукова $^{+*}$, $A.\,C.\,$ Тарасенко * , $C.\,B.\,$ Тарасенко *1 , $B.\,\Gamma.\,$ Шавров $^{\times}$

+ Физико-технический факультет, Донецкий государственный университет, 283001 Донецк, Россия

*Донецкий физико-технический институт им. А.А.Галкина, 283048 Донецк, Россия

[×] Институт радиотехники и электроники им. В. А. Котельникова РАН, 125009 Москва, Россия

Поступила в редакцию 7 февраля 2024 г. После переработки 31 марта 2024 г. Принята к публикации 5 апреля 2024 г.

На примере слоя оптически прозрачного магнитного диэлектрика между двух идентичных анизотропно проводящих метаповерхностей (а также конечной одномерной сверхрешетки с таким элементарным периодом) изучены особенности резонансного фотонного прохождения, связанные с гибридизацией двух независимых механизмов формирования коллапса резонанса Фано: гиротропии и пространственной дисперсии. В частности показано, что возникновение в спектре излучения радиационных поляритонов интерференционного типа "темных" состояний с нулевой радиационной шириной может сопровождаться подавлением эффекта полной электромагнитной прозрачности слоя, который характерен для двухмодовой модели образования данного типа связанных состояний в континууме. При этом одновременно возникающая в слое радиационная поляритонная мода для фотонного кристалла рассматриваемого типа может стать сверхизлучательной, что приведет к практически полному фотонному отражению.

DOI: 10.31857/S1234567824090106, EDN: DVFQVQ

Поиск новых эффективных способов управления электромагнитной прозрачностью оптически анизотропной слоистой гетероструктуры при прохождении через нее электромагнитной (ЭМ) волны представляет в настоящее время значительный как научный, так и практический интерес [1]. В этой связи, несомненно, важными представляются результаты работы [2], в которой на примере квантового волновода с притягивающей примесью конечных размеров изучалось распространение электронных волн. В частности, было показано, что форма кривой прозрачности в зависимости от энергии электрона, проходящего через примесь, может представлять собой асимметричную кривую, характерную для резонанса Фано. Вследствие деструктивной двухмодовой интерференции в открытом канале излучения слияние максимума и минимума на такой кривой в некоторой точке (точке коллапса резонанса Фано) отвечает формированию на фоне сплошного спектра излучательных мод "темных" состояний с нулевой радиационной шириной линии. Это соответствует полной резонансной прозрачности такой примеси в данных условиях и позволяет характеризовать подобные "темные" состояния как связанные состояния в

континууме (ССК). Однако до сих пор значительные усилия по поиску аналогичных эффектов в оптике были сосредоточены, главным образом, на слоистых гетероструктурах с участием немагнитных диэлектриков [3, 4]. В частности, особый интерес в этом плане представляет изучение эффектов электромагнитной прозрачности открытых микрорезонаторов, но не вследствие когерентной оптической нелинейности, а как результат линейной оптики, сопутствующий формированию в сплошном спектре излучения таких структур особых точек - ССК (см., например, [5]). Вместе с тем, в последние годы большой исследовательский интерес привлекла также и идея создания быстродействующих и энергоэффективных устройств спиновой электроники за счет перехода от зарядовых токов к спиновым, в том числе и обусловленным спин-волновыми возбуждениями в диэлектриках (магнонами) [6]. В сочетании с необходимостью дальнейшего существенного повышения быстродействия устройств функциональной магнитоэлектроники это привело к формированию и бурному росту магнитной спинтроники на основе антиферромагнетиков (АФМ) [7] и ферримагнетиков (ФИМ) [8]. В таких магнитных диэлектриках спиновые токи формируются магнонами, собственные частоты которых за счет усиления межподреше-

¹⁾e-mail: s.v.tarasenko@mail.ru

точным обменным взаимодействием могут достигать терагерцового частотного диапазона. В этих условиях становится актуальной задача об оптимизации резонансного магнон-фотонного взаимодействия в открытом микрорезонаторе [9], заполненном АФМ или ФИМ средой [1,5]. Надо, однако, учитывать, что, обладая дальним магнитным порядком, магнитные кристаллы (в том числе АФМ и ФИМ) являются средами с ярко выраженной пространственной дисперсией вследствие неоднородного обменного взаимодействия, причем его вклад в спектр магнонов в этих средах также может быть обменно усиленным [8, 10]. Естественно, что в случаях, когда соответствующие магнонные поляритоны являются еще и радиационными, это не может не сказаться на условиях формирования ССК в спектре излучения этих ЭМ возбуждений. Так в [11] на основе предложенного в [12] механизма двухмодовой деструктивной интерференции было показана возможность формирования за счет корректного учета пространственной дисперсии АФМ среды (неоднородного обменного взаимодействия) "темных" состояний интерференционного типа [13] в спектре излучения распространяющихся вдоль слоя негиротропного АФМ радиационных магнитных поляритонов. Однако в [11] рассматривались только такие сочетания магнитооптической конфигурации (МОК) и граничных условий, которые предполагали независимое распространение вдоль $A\Phi M$ слоя магнитных поляритонов TM- и TEтипа и один открытый во внешнюю среду канал излучения фотонов соответствующей поляризации.

Что же касается ФИМ, то он не только, как и АФМ, обладает пространственной дисперсией, но вне точки магнитной компенсации, даже в отсутствие постоянного внешнего поля, является также и гиротропной средой [8, 10]. Хорошо известно, что это приводит к дополнительным механизмам двулучепреломления уже на уединенной границе раздела гиротропной и негиротропной сред [14], и, в частности, к увеличению числа волн, вносящих свой вклад в структуру поля волноводных поляритонов EH-типа, распространяющихся вдоль такого слоя. Это означает, что для ФИМ слоя и в продольной, и в полярной МОК [10] изучение распространения этого типа ЭМ волн (как собственных, так и несобственных) должно быть основано на одновременном учете как эффектов гиротропии, так и эффектов пространственной дисперсии. Ранее в [15] была рассмотрена возможность формирования в открытом канале излучения за счет гиротропии "квази ССК" (высокодобротных (суперрезонансных согласно [16]) состояний), а в [17], на примере в двухмерном квантовомеханическом волноводе с резонатором субволнового размера, была показана важность учета многомодовой интерференции при формировании спектра ССК. Тем не менее, изучение влияния гибридизации гиротропии и пространственной дисперсии на электромагнитную прозрачность слоя ФИМ или конечного магнитного фотонного кристалла на его основе в условиях формирования "темных" состояний с нулевой радиационной шириной в сплошном спектре излучательных поляритонных мод (в точках коллапса резонанса Фано) до сих пор не проводилось. Выяснение этих вопросов и является целью предлагаемого сообщения.

Пусть имеется слой магнитного диэлектрика толщиной 2d, связывающий между собой два идентичные по своим оптическим свойствам полупространства, занятые одноосным (ось анизотропии $\tilde{\mathbf{c}}$), оптически прозрачным немагнитным диэлектриком ("тильдой" отмечены все величины, относящиеся к данной среде) с материальными соотношениями вида [18]:

$$\tilde{\mathbf{D}} = \left(\tilde{\varepsilon}_o \bar{\bar{I}} + (\tilde{\varepsilon}_e - \tilde{\varepsilon}_0) \,\tilde{\mathbf{c}} \otimes \tilde{\mathbf{c}}\right), \ \tilde{\mathbf{B}} = \tilde{\mathbf{H}}, \tag{1}$$

где $ar{I}$ – единичный тензор, $ar{\mathbf{D}}$ и $ar{\mathbf{B}}$ – вектора электрической и магнитной индукции соответственно. Пусть q – нормаль к границе раздела сред, **a** – нормаль к плоскости падения волны, направление распространения волны вдоль слоя, $\tilde{\mathbf{c}} \| \mathbf{b}$. Для удобства и наглядности расчетов будем полагать, что для распространяющейся вдоль слоя объемной $\Im M$ волны EH-типа одновременное сосуществование открытого и закрытого каналов фотонного излучения обеспечивается наличием анизотропно проводящей поверхности (согласно терминологии [19]) на обеих его границах раздела со средой (1). В частности, если для выбранной плоскости распространения ЭМ волны вдоль слоя открытый канал излучения в среде (1) связан с волной ТМ-типа, то, следуя [19], его существование можно обеспечить наличием на границах раздела между слоем и неограниченной средой (1) метаповерхностей со следующими ЭМ характеристиками:

$$(\mathbf{E}\mathbf{a}) = (\tilde{\mathbf{E}}\mathbf{a}) = 0, \quad (\mathbf{E}\mathbf{b}) = (\tilde{\mathbf{E}}\mathbf{b}),$$
$$(\mathbf{H}\mathbf{a}) = (\tilde{\mathbf{H}}\tilde{\mathbf{a}}), \quad \xi = \pm d,$$
 (2)

где ξ — текущая координата вдоль **q**. Что же касается собственно гиротропной магнитной диэлектрической среды, формирующей слой обсуждаемой гетероструктуры (1), (2), то будем полагать, что это обменно коллинеарный, одноосный ФИМ. В качестве примера рассмотрим двухподрешеточную мо-

дель ($\mathbf{M}_{1,2}$ – намагниченности подрешеток, намагниченности насыщения которых $|\mathbf{M}_1|=M_{01}$ и $|\mathbf{M}_2|=M_{02}$ соответственно) обменно коллинеарного ФИМ с легкой магнитной осью OZ ($M_{1z}=M_{01},\ M_{2z}==-M_{02}$) и плотностью энергии вида ([10]):

$$F = \delta \mathbf{M}_{1} \mathbf{M}_{2} + \frac{\alpha_{1}}{2} (\nabla \mathbf{M}_{1})^{2} + \frac{\alpha_{2}}{2} (\nabla \mathbf{M}_{2})^{2} - \frac{b_{1}}{2} \mathbf{M}_{1z}^{2} - \frac{b_{2}}{2} \mathbf{M}_{2z}^{2} - (\mathbf{M}_{1} + \mathbf{M}_{2}, \mathbf{H}) + \frac{H^{2}}{8\pi} + \frac{\varepsilon_{\perp} (E_{x}^{2} + E_{y}^{2})}{8\pi} + \frac{\varepsilon_{\parallel} E_{z}^{2}}{8\pi},$$
(3)

где δ — константа однородного межподрешеточного обмена, $\alpha_{1,2}$ и $b_{1,2}>0$ — константы неоднородного обмена и легкоосной магнитной анизотропии внутри каждой из подрешеток соответственно. Динамика данной динамической системы определяется связанной системой уравнений, состоящей из уравнений Максвелла и уравнений Ландау—Лифшица. В соответствии с (3) для равновесного состояния $\mathbf{l}_0 \| OZ$ ($\mathbf{l}_0 \equiv \mathbf{M}_{01} - \mathbf{M}_{02}$) это приводит (см. также [8, 10]) к следующим материальным соотношениям в рассматриваемом легкоосном ферримагнетике (ЛО ФИМ):

$$\mathbf{B} = \begin{pmatrix} \mu_{\perp} & -i\mu_{*} & 0 \\ i\mu_{*} & \mu_{\perp} & 0 \\ 0 & 0 & 1 \end{pmatrix} \mathbf{H},$$

$$\mathbf{D} = \begin{pmatrix} \varepsilon_{\perp} & -i\varepsilon_{*} & 0 \\ i\varepsilon_{*} & \varepsilon_{\perp} & 0 \\ 0 & 0 & \varepsilon_{\parallel} \end{pmatrix} \mathbf{E},$$

$$\mu_{\perp} = \equiv 1 + 4\pi\chi_{\perp}, \quad \mu_{*} \equiv 4\pi\chi_{*}. \tag{4}$$

$$\chi_{\perp} \equiv \frac{\chi_{1+} + \chi_{2+}}{2} + \frac{\chi_{1-} + \chi_{2-}}{2};$$

$$\chi_{*} \equiv \frac{\chi_{1+} + \chi_{2+}}{2} - \frac{\chi_{1-} + \chi_{2-}}{2};$$

$$\Delta_{\pm}\chi_{1\pm} \equiv \mp g_{1}M_{01}(\omega \mp \omega_{2}) + g_{1}g_{2}\delta M_{01}M_{02};$$

$$\Delta_{\pm}\chi_{2\pm} = \pm g_{2}M_{02}(\omega \mp \omega_{1}) + g_{1}g_{2}\delta M_{01}M_{02};$$

$$\Delta_{\pm} \equiv (\omega \mp \omega_{1})(\omega \mp \omega_{2}) + g_{1}g_{2}\delta^{2}M_{01}M_{02} \equiv$$

$$\equiv (\omega - \omega_{+})(\omega - \omega_{-});$$

$$\omega_{1} = g_{1}(\delta M_{02} + b_{1}M_{01} + \alpha_{1}\mathbf{k}^{2}),$$

$$\omega_{2} = g_{2}(-\delta M_{01} - b_{2}M_{02} - \alpha_{2}\mathbf{k}^{2}).$$

В дальнейшем в качестве плоскости распространения ЭМ волны с волновым вектором \mathbf{k} и частотой ω , без ограничения общности, выберем плоскость $\mathbf{k} \in YZ$. В этом случае и для полярной $(\mathbf{q} \| \mathbf{l}_0 \| OZ)$, и для продольной $(\mathbf{q} \| OY, \mathbf{b} \| \mathbf{l}_0 \| OZ)$ МОК [10] нормальная к плоскости границы раздела компонента волнового вектора \mathbf{k} в зависимости от ориентации вектора

 ${f q}$ в плоскости ${f k}\in YZ$ с учетом (4) определяется из следующего характеристического уравнения:

$$D^{EH}(k_y, k_z, \omega) = 0, \quad D^{EH}(k_y, k_y, \omega) \equiv$$

$$\equiv \left\{ \left[\frac{\mu_{\perp} \varepsilon_{\perp}}{\varepsilon_{\parallel}} k_y^2 + \mu_{\perp} k_z^2 - \varepsilon_{\perp} k_0^2 (\mu_{\perp}^2 - \mu_*^2) \right] \times \left[\frac{\varepsilon_{\perp} \mu_{\perp}}{\mu_{\parallel}} k_y^2 - \mu_{\perp} k_0^2 (\varepsilon_{\perp}^2 - \varepsilon_*^2) \right] - k_z^2 k_0^2 (\varepsilon_{\perp} \mu_* + \mu_{\perp} \varepsilon_*)^2 \right\} \Delta_{+} \Delta_{-}.$$
 (5)

Полученное соотношение отвечает рассчитанному с учетом неоднородного обменного взаимодействия (4) спектру нормальных магнитных поляритонов EH-типа, распространяющихся при $\mathbf{k} \in YZ$, $\mathbf{l}_0 \| OZ$ в неограниченном ЛО ФИМ (3), (4). Так как (5) представляет собой линейное алгебраическое уравнение четвертой степени относительно $k_{\parallel}^2 =$ $= (\mathbf{kq})^2$, то отсюда следует принципиальная возможность четырехлучевого преломления ЭМ волны на границе раздела негиротропной (1) и гиротропной (3) диэлектрических сред. Чтобы показать это более наглядно, обратимся к АФМ пределу рассматриваемой модели ЛО ФИМ (3), полагая что в этом случае $g_1 = g_2 = g$, $\alpha_1 = \alpha_2 = \alpha$, $b_1 = b_2 = b$, а магнитные подрешетки в модели (3)-(5) равны по величине и кристаллографически эквивалентны [8,10]. В результате дисперсионное соотношение (5), совместно с (4) описывающее спектр магнонных поляритонов EH-типа в неограниченной модели ЛО ФИМ (5) в АФМ пределе (в точке магнитной компенсации), факторизуется, поскольку в выбранной МОК имеет место независимое распространение магнитных поляритонов TM- и TE-типа:

$$D^{EH} = (k_y, k_z, \omega) =$$

$$= D^{TE}(k_y, k_z, \omega) D^{TM}(k_y, k_z, \omega) = 0,$$
 (6)

$$D^{TE}(k_y, k_z, \omega) \equiv (k_y^2 - \varepsilon_\perp k_0^2)((\omega_0^2 + s^2 k^2)(1 + \varepsilon) - \omega^2) + k_z^2(\omega_0^2 + s^2 k^2 - \omega^2),$$

$$D^{TM}(k_y, k_z, \omega) \equiv (\varepsilon_\perp k_y^2 + \varepsilon_\parallel k_z^2 - \varepsilon_\perp \varepsilon_\parallel (1 + \varepsilon)k_0^2) \times (\omega_0^2 + s^2 k^2 - \omega^2) - \varepsilon \varepsilon_\perp \varepsilon_\parallel k_0^2 \omega^2,$$

$$s = gM_0 \sqrt{\delta \alpha}, \quad \omega_0 = gM_0 \sqrt{\delta b},$$

$$\varepsilon \equiv 4\pi/\delta, \quad k_0 \equiv \omega/c.$$

Следует отметить, что соотношения (5) или (6) в зависимости от частоты определяют, в частности, форму сечения плоскостью падения ($\mathbf{k} \in YZ$) поверхности волновых векторов (ПВВ) поляритонной

волны в рассматриваемой ФИМ (или АФМ) среде без учета граничных условий. Анализ показывает, что в продольной МОК ($\mathbf{q}\|OY$, $\mathbf{k} \in YZ$, $\mathbf{l}_0\|OZ$) уже для АФМ среды, обладающей пространственной дисперсией (6) при заданном ω как в случае магнитных поляритонов TM-, так и TR-типа с учетом $\mathbf{k}/|\mathbf{k}|$ возможно формирование эффекта двулучеотражения (см. рис. 1). В тех случаях, когда для обоих

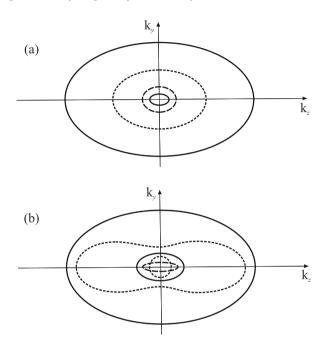


Рис. 1. Зависимость структуры сечения ПВВ EHволны типа плоскостью падения $\mathbf{k} \in YZ$ (5) в АФМ пределе (6) для трех различных по отношению к $\omega_0\sqrt{1+\varepsilon}$ и ω_0 значений частоты ω : (a) – в (6) $D^{TM}(\omega,\mathbf{k})=0$; (b) – в (6) $D^{TE}(\omega,\mathbf{k})=0$. В обоих вариантах сплошная линия – $\omega>\omega_0\sqrt{1+\varepsilon}$, длинные штрихи – $\omega<\omega_0$, короткие штрихи – $\omega<\omega<\omega_0\sqrt{1+\varepsilon}$

типов поляризации ЭМ волны такой эффект реализуется при одних и тех же сочетаниях $\omega-h$ включение даже предельной слабой гиротропии делает возможным реализацию в ФИМ среде (3)-(5) эффектов как трех-, и так и четырехволнового лучепреломления (отражения) ЭМ волны ЕН-типа. В качестве подтверждения достаточно учесть, что в окрестности точки магнитной компенсации ($|\mu_*| = |\varepsilon_*| = 0$) с точностью до величин второго порядка малости относительно $(\varepsilon_{\perp}\mu_* + \mu_{\perp}\varepsilon_*)^2\Delta_{\perp}\Delta_{-} \ll 1$ структура сечения ПВВ нормальных поляритонных волн в ФИМ (4)–(5) совпадает с (6). В этом пределе можно с помощью рис. 1, наглядно проследить характер зависимости от частоты структуры сечения плоскостью падения ПВВ нормальных поляритонных волн EH-типа (4)–(5). Для этого необходимо приведенные на рис. 1, варианты (а) (волна TM-типа) и (b) (волна TE-типа) совместить в рамках общей системы координат ($\mathbf{k} \in YZ$). В частности, отсюда следует, что для падающей извне на слой ЭМ волны четырехволновое лучепреломление в рассматриваемой МОК становится возможным если одновременно $\omega > \omega_0 \sqrt{1+\varepsilon}$, а $k < k_0 \sqrt{\varepsilon_\perp}$, а двухволновое – если одновременно $\omega < \omega_0$, а $k < k_0 \sqrt{(1+\varepsilon)\varepsilon_\perp}$.

Таким образом, учитывая вышесказанное и в соответствии с общими положениями теории волн в слоистых средах [20], для падающей из среды (1) на гиротропный слой с пространственной дисперсией среды (3)–(5) плоской объемной ЭМ волны TM-типа в случае продольной МОК ($\mathbf{q}\|OY$, $\tilde{\mathbf{c}}\|\mathbf{b}\|\mathbf{l}_0\|OZ$) получим ($\eta^2 \equiv -k_{\parallel}^2$, $h \equiv (\mathbf{kb})$):

$$\tilde{H}_x(y=d) = (1+V)\exp(i\psi),$$

$$\tilde{H}_x(y=-d) = W\exp(i\psi), \quad \psi = hz - \omega t, \quad (7)$$

$$H_x(-d < y < d) = \sum_{j=1}^{n=4} H_{xj}(A_j c_{jy} + B_j s_{jy}) \exp(i\psi),$$
$$c_{jy} = \operatorname{ch}(\eta_j y), \quad s_{jy} \equiv \operatorname{sh}(\eta_j, y),$$

где A_j, B_j – произвольные постоянные, подлежащие определению, n – число корней k_{\parallel}^2 характеристического уравнения (4)–(5), j – номер ветви поляритонного спектра неограниченного магнетика, H_{xj} – амплитуда парциальной волны с номером j, входящей в состав волны H_x в магнетике (4)–(5). Учет наличия в ФИМ среде (3)–(5) неоднородного обменного взаимодействия, определяющего пространственную дисперсию среды, делает необходимым дополнение электромагнитных условий (2) соответствующими обменными граничными условиями [21]. С целью аналитического описания условий формирования ССК в рассматриваемой гиротропной магнитной среде, обладающей пространственной дисперсией, будем полагать, что межслоевые граничные условия (2) при $\mathbf{q} || OY, \mathbf{k} \in YZ, \tilde{\mathbf{c}} || \mathbf{l}_0 || \mathbf{b} || OZ$ имеют вид

$$M_{1\alpha} = M_{2\alpha} = 0, \quad E_x = 0,$$

$$\tilde{E}_x = 0, \quad H_x = \tilde{H}_x, \quad E_z = \tilde{E}_z, \quad y = \pm d,$$
 (8)

где $\alpha=x,y$. Соотношения (8) отвечают случаю, когда имеется единственный открытый канал фотонного излучения из ЛО ФИМ (3)–(5) в окружающую магнитный слой среду (1), связанный с волной TMтипа. По аналогии с методом расчета, развитым в [20], используя первые три соотношения из (8), можно в (7) исключить из дальнейшего рассмотрения

 A_{2-4} и B_{2-4} , выразив их через A_1 и B_1 соответственно. Представляя структуру соответствующих соотношений как $(c_{id} \equiv \operatorname{ch}(\eta_i d), \, s_{id} \equiv \operatorname{sh}(\eta_i d))$

$$A_j = F_{j1} \frac{c_{1d}}{c_{jd}} A_1, \quad B_j = F_{j1} \frac{s_{1d}}{s_{jd}} B_1, \quad j = 1 \div 4, \quad F_{11} = 1,$$
(9)

получим, что для продольной МОК структуру матрицы перехода для слоя рассматриваемого ЛО ФИМ (3)–(5) с учетом (8)–(9) можно представить как

$$\begin{pmatrix} \mathbf{Ha} \\ \mathbf{Eb} \end{pmatrix}_{y=d} = \bar{T}_{p} \begin{pmatrix} \mathbf{Ha} \\ \mathbf{Eb} \end{pmatrix}_{y=-d},$$

$$\bar{T}_{p} \equiv \begin{pmatrix} T_{11} & T_{12} \\ T_{21} & T_{22} \end{pmatrix}, \qquad (10)$$

$$\bar{T}_{p}(2d) \equiv \bar{P}(d)\bar{P}^{-1}(-d),$$

$$\begin{pmatrix} \mathbf{Ha} \\ \mathbf{Eb} \end{pmatrix}_{y} = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix};$$

$$P_{11}(y) = H_{xj}F_{j1}\frac{c_{1d}}{c_{jd}}, \quad P_{12}(y) = H_{xy}F_{j1}\frac{s_{1d}}{s_{jd}}s_{1y}. \quad (11)$$

$$P_{21}(y) = E_{zj}F_{j1}\frac{c_{1d}}{c_{id}}s_{1y}, \quad P_{22}(y) = E_{zj}F_{j1}\frac{s_{1d}}{s_{id}}c_{1y}.$$

В результате, следуя [20], и используя (7), (9)–(11), получим, что для падающей из среды (1) на рассматриваемый слой плоской объемной ЭМ волны TM-типа коэффициент прохождения через нижнюю поверхность слоя (y=-d) и коэффициент отражения от его верхней поверхности (y=d)

$$W_p(y=-d) = \frac{2i\tilde{Z}_p(P_{11}P_{22} - P_{21}P_{21})}{(P_{21} - i\tilde{Z}_pP_{11})(P_{22} - i\tilde{Z}_pP_{12})}, \quad (12)$$

соответственно имеют вид:

$$V_p(y=d) = \frac{i\tilde{Z}_p + Z_{\rm in}}{i\tilde{Z}_p - Z_{\rm in}}; \quad Z_{\rm in} = \frac{T_{21} - iT_{22}\tilde{Z}_p}{T_{11} - iT_{12}\tilde{Z}_p}.$$
(13)

Таким образом, согласно (4)–(5), (8)–(13) обсуждаемая магнитная гетероструктура характеризуется селективной электромагнитной прозрачностью при сканировании не только по частоте, но и по углу. В частности если в (12) $P_{11}P_{12}\tilde{Z}_p^2+P_{21}P_{22}=0$, то $|W_p(y=-d)|=1$, тогда как при $P_{11}P_{22}=P_{21}P_{21}$ $|W_p(y=-d)|=0$ (см. также [20]). В соответствии с (11), (12) выполнение условия полного электромагнитной непрозрачности рассматриваемой открытой магнитной гетероструктуры $(|W_p(y=-d)|=0)$ имеет место в тех точках плоскости " $\omega-g$ " для которых совместно с (4)–(5)

$$(|c_{\alpha d}| + |s_{\beta d}|)(|s_{\alpha d}| + |c_{\beta d}|) = 0, \quad \eta_{\alpha,\beta}^2(\omega,h) < 0,$$

$$\alpha = 1 \div 4, \quad \beta = 1 \div 4, \quad \alpha \neq \beta,$$
 (14)

что отвечает $|P_{11}| + |P_{12}| = 0$.

В окрестности каждого из указанных выше экстремумов форма кривой прозрачности в зависимости от ω или h подобна форме характерной для резонанса Брейта–Вигнера. Вместе с тем, согласно общим положениям теории волновых процессов в слоистых средах [20], дисперсионные свойства распространяющихся вдоль слоя (7) оптически прозрачного, гиротропного магнетика с пространственной дисперсией (3)–(5) EH-мод (как собственных ($\tilde{k}_{\parallel}^2 < 0$)), так и несобственных (радиационных ($\tilde{k}_{\parallel}^2 > 0$)) с учетом (10)–(13) определяются соотношением:

$$i\tilde{Z}_p(T_{11} + T_{22}) - T_{21} + T_{12}\tilde{Z}_p^2 = 0, \quad \tilde{Z}_p \equiv \frac{\tilde{k}_{\parallel}}{\tilde{\varepsilon}_e k_0},$$
$$\tilde{k}_{\parallel}^2 \equiv \frac{\tilde{\varepsilon}_e}{\tilde{\varepsilon}_o} \{k_0^2 \tilde{\varepsilon}_o - h^2\}. \tag{15}$$

Важно отметить, что, вследствие (8), в рассматриваемой слоистой гетероструктуре имеется только один открытый канал фотонного рассеяния ($\tilde{k}_{\parallel}^2 > > 0$), а в самой магнитной среде (4)–(5) возможно существование эффекта многолучевого отражения (преломления) для ЭМ волны распространяющейся вдоль магнитного слоя. Это, согласно [12], создает предпосылки для реализации в спектре излучения радиационных магнитных поляритонов ССК интерференционного типа по механизму Фридриха—Винтгена [13], однако в нашей модели интерференция в магнитном слое является более чем двухмодовой (в (7) n>2).

Совместный анализ (3)–(12) показывает, что на плоскости внешних параметров " $\omega - h$ " условие формирования ССК интерференционного типа [12,13] в спектре излучения распространяющихся вдоль слоя гиротропной среды объемных радиационных мод EH-типа, исходя из (10)–(12), (15), можно представить как:

$$(|P_{11}|) + |P_{21}|)(|P_{12}| + |P_{22}|) = 0, \quad \tilde{k}_{\parallel}^2 > 0.$$
 (16)

Таким образом, сочетание в рассматриваемой магнитной гетероструктуре только одного открытого канала фотонного излучения, с имеющим место в магнитной среде эффектом многоволновой интерференции, делает возможным при выполнении (16) слияние некоторых из отмеченных выше для $|W_p(y==-d)|$ точек максимума и минимума. В окрестности каждой из точек, определяемых из (16), структуру коэффициента прохождения (12) при угловом сканировании можно представить в виде $(C(h)-{\rm const})$:

$$W_p(y = -d) \approx C \frac{h - h_0}{h - h' - ih''}.$$
 (17)

В этом случае $|W_p(y=-d)|^2$ будет иметь форму, свойственную асимметричному резонансу (типа резонанса Фано [2]), а слияние максимума и минимума кривой $|W_p(y=\pm d)|^2$ отвечает коллапсу резонанса Фано, эффект который согласно [2] может сопутствовать формированию в самой точке "темного" состояния с нулевой радиационной шириной (16): (|h-h'|+|h''|=0).

В результате, в соответствии с (9)–(11), (16) формирование ССК интерференционного типа в открытом канале фотонного рассеяния $(\tilde{k}_{\parallel}^2>0)$ в зависимости от числа парциальных волн в (7) $p\leq n=4$, образующих такое "темное" состояние, становится возможным, если

$$\left(\sum_{j=1}^{p} |c_{jd}|\right) \left(\sum_{j=1}^{p} |s_{jd}|\right) = 0,$$

$$p = 2 \div 4, \quad \eta_j^2(\omega, h) < 0. \tag{18}$$

Таким образом, используя (4)–(5), для рассматриваемой продольной МОК условия существования в спектре радиационных магнитных EH-поляритонов ССК (18), индуцированных гибридизацией эффектов гиротропии и пространственной дисперсии на плоскости внешних параметров " $\omega-h$ " при p=2, принимают вид:

$$D_{\nu}^{EH}(h,\omega) = D_{\rho}^{EH}(h,\omega),$$

$$\nu \neq \rho, \quad \nu = 1, 2, ..., \quad \rho = 1, 2 ...$$

$$D_{\nu}^{EH}(h,\omega) = D^{EH}(k_{y} = \kappa_{\nu}, k_{z} = h, \omega) \quad \tilde{k}_{\parallel}^{2} > 0. \quad (19)$$

$$\mathbf{q} \| OY, \quad \mathbf{b} \| OZ,$$

При этом в (19) одновременно либо $\kappa_{\nu} \equiv \pi (2\nu -$ (-1)/(2d) и $\kappa_{
ho}\equiv\pi(2
ho-1)/(2d)$ или $\kappa_{
u}\equiv
u\pi/d$ и $\kappa_{
u}\equiv$ $\equiv \pi \rho/d$. Соотношения (4)–(5), (19) отвечают точкам вырождения в спектре объемных магнитных поляритонов EH-типа, распространяющихся вдоль слоя ЛО ФИМ (3)–(5), на обеих поверхностях которого при $\mathbf{q} \| OY, \ \mathbf{k} \in YZ, \ \mathbf{b} \| OZ, \ \mathbf{l}_0 \| OZ$ межслоевые (при $y = \pm d$) граничные условия имеют вид: $E_x = 0$, $H_x = 0$, где $M_{1\alpha} = M_{2\alpha} = 0$, $\alpha = x, y$. Несложно убедиться в наличии в рассматриваемой динамической системе двух независимых механизмов формирования "темных" состояний с нулевым радиационным затуханием в спектре излучательных поляритонов рассматриваемой магнитной гетероструктуры: пространственной дисперсии и гиротропии. Так из совместного анализа (5), (19) следует, что определяемое (19) условие формирования ССК с p=2сохраняется как в пределе $(|\alpha_1| + |\alpha_2|) \to 0$ (гиротропный ($|\varepsilon_*| + |\mu_*|$) $\neq 0$) диэлектрик без пространственной дисперсии (безобменное приближение), так и в случае $(|\varepsilon_*| + |\mu_*|) \to 0$ (негиротропный магнитный диэлектрик с пространственной дисперсией $(|\alpha_1| + |\alpha_2|) \neq 0$). Помимо этого, согласно (5), (19), на плоскости внешних параметров " $\omega - h$ " возможны также и дополнительные точки формирования ССК с p=2 (как результат гибридизации обоих отмеченных выше механизмов: гиротропии и пространственной дисперсии). В частности соотношения (5), (18), (19) могут выполняться и в условиях одновременного формального предельного перехода к пределу $(|\varepsilon_*| + |\mu_*|)\alpha_1 \neq 0$, $\alpha_2 \to 0$ или $(|\varepsilon_*| + |\mu_*|)\alpha_2 \neq 0$ $\alpha_1 \to 0$, т.е. в случае гибридизации в магнитной среде эффектов гиротропии и пространственной дисперсии.

Следует отметить, что и условия (14) полной ЭМ непрозрачности рассматриваемой магнитной гетероструктуры по отношению к падающей извне плоской объемной ТМ волне ($W_p=0$) на плоскости внешних параметров " $\omega-h$ " также могут быть определены с помощью соотношений (19), только теперь в них одновременно должно быть либо $\kappa_{\nu} \equiv \pi(2\nu-1)/(2d)$ и $\kappa_{\nu} \equiv \pi \rho/d$ или $\kappa_{\nu} \equiv \nu \pi/d$ и $\kappa_{\rho} \equiv \pi(2\rho-1)/(2d)$ (в обоих этих вариантах $\nu=1,2,\ldots \rho=1,2\ldots (\nu\neq\rho)$).

Совместный анализ соотношений (12)-(19) показывает, что для ССК интерференционного (16), (18), (19) типа с p = 2 < n, в условиях коллапса резонанса Фано, в (12)–(13) деструктивная интерференция поля излучения в открытом канале фотонного рассеяния $(\tilde{k}_{\parallel}^2 > 0)$, вследствие гибридизации эффектов гиротропии и пространственной дисперсии, приводит к подавлению, отмеченного в [2], эффекта полной ЭМ прозрачности и теперь $|W_p(y=\pm d)| < 1$. Это связано с многоволновой интерференцией ЭМ волн ЕНтипа внутри ФИМ слоя, индуцированной гибридизацией эффектов гиротропии и неоднородного обменного взаимодействии (в (7) n=4). В этом случае падающая извне на магнитный слой плоская объемная ЭМ волна TM-типа, ω и h которой отвечают формированию ССК (16), (18), (19), с поляризацией EH-типа и p=2 < n, одновременно нерезонансно возбуждает в слое также и излучательную поляритонную моду той же поляризации (но с иным пространственным распределением ЭМ полей в слое). В частности, при p=2 < n, для ССК $|P_{21}| = |P_{11}| =$ 0 из (16) соответствующей излучательной моде согласно (12), (15), (16) отвечает $|P_{22}||P_{12}| \neq 0$, тогда как в случае ССК с $|P_{22}| = |P_{12}| = 0$ из (16) для одновременно возбуждаемой в рассматриваемом магнитном слое радиационной поляритонной моды $|P_{21}||P_{11}| \neq 0$. При этом, число парциальных волн участвующих в формировании в слое таких, "сопутствующих" образованию ССК с p < n, излучательных поляритонных мод, с учетом (7), определяется как n-p.

Как уже говорилось выше, физической причиной формирования интерференционных типов ССК p = 2 < n = 4 является существование в магнитной среде (3)–(5) при $\omega - h$ удовлетворяющих (16), (18), (19) эффекта двулучеотражения при однократном падении объемной поляритонной волны на поверхность магнетика. Вместе с тем, согласно (16), (18), (19), для тех сочетаний $\omega - h$ которым в (4)–(5) отвечает возможность существования в гиротропной среде с пространственной дисперсией эффекта трех-(в (4)–(5), $\eta_{\alpha,\beta,\gamma}^2(\omega,h)<0$ ($\alpha=1\div 4,\ \beta=1\div 4,\ \gamma=1\div 4,\ \alpha\neq\beta\neq\gamma)$) или четырехлучевого (в (4)–(5) $\eta_{1-4}^2(\omega,h)<0$) отражения гибридной поляритонной волны от поверхности магнетика, делает принципиально возможным также и формирование в спектре излучения рассматриваемых радиационных магнитных поляритонов ЕН-типа интерференционных типов ССК (18) с p = 3 или p = 4 соответственно.

С учетом (19) их можно рассматривать как результат слияния на плоскости внешних параметров $\omega - h$ ССК интерференционного типа с p = 2 (см. (16), (18)). При этом у ССК с p = 4 согласно (16), (18), в отличие от ССК с p = 2 или p = 3 имеет место p = n. В результате в (12) $|W_p(y = -d)| = 1$, так как в (10)–(11) матрица перехода волны TMтипа через рассматриваемую гетероструктуру \bar{T} при выполнении (18) становится единичной, а значит такие интерференционные ССК даже при многоволновой интерференции не будут "скрытыми" в рассматриваемой модели. В этом случае для ССК с p=4одновременно возбуждаемой в точке коллапса резонанса Фано "сопутствующей" излучательной поляритонной моды не существует (p = n). Однако, как уже отмечалось и в [17] для случая электронных волн в квантово-механическом волноводе, трудности достижения условий необходимых для существования ССК (18), возрастают с увеличением числа парциальных волн p, формирующих рассматриваемый тип ССК. В частности, для p=4 согласно (16), (18) будет необходимо одновременное вырождение в одной и той же точке плоскости $\omega - h$ уже не двух, как в (18), (19) при ССК с p = 2, а четырех мод спектра объемных ЭМ волн ЕН-типа, распространяющихся вдоль слоя (8) гиротропного магнетика с пространственной дисперсией (4)–(5).

Несомненный практический интерес представляет то обстоятельство, что при $p=2\div n$ для падающей извне плоской объемной ЭМ волны (выше как пример волна TM-типа) в окрестности точки коллапса резонанс Фано (16), (18), (19) согласно (13)

 $V_p = |V_p| \exp(i\varphi), \ \operatorname{tg}(\varphi/2) = (h-h_N)/(h-h_D)$ и при строгом выполнении (16), (18), (19) $h_N = h_D$. Таким образом, если падающая извне ЭМ волна не плоская, а квазиплоская, то, поскольку пространственное смещение отраженного пучка вдоль границы раздела сред (эффект Гуса–Хенхен) определяется как $\Delta = \partial \varphi/\partial h$ (см., например, [20]), то $|\Delta(\omega,h)|$ достигает локального максимума как при $h = h_D$, так и при $h = h_N$. Его величина (в рамках данной модели расчета) неограниченно возрастает по мере приближения параметров падающей волны к отвечающим точке формирования "темного" поляритонного состояния с нулевой радиационной шириной (16), (18), (19).

Дополнительные особенности, связанные с возможностью формирования в спектре радиационных магнитных поляритонов "скрытых" ССК (|W| < 1) возникают в случае, когда обсуждаемая слоистая магнитная гетероструктура с одним открытым каналом фотонного рассеяния (4)–(8) является элементарным периодом одномерного магнитного фотонного кристалла ФК (1D МФК). Пусть в рассматриваемой продольной МОК ($\mathbf{q}\|OY, \mathbf{k} \in YZ, \mathbf{b}\|OZ, \mathbf{l}_0\|OZ)$ для 1D МФК из N-периодов в погруженного в среду (1) (|y| > (2N-1)d) выполнена следующая система межслоевых граничных условий ($f = 1 \div N, \alpha = x, y$):

$$E_x = 0$$
, $\tilde{E}_x = 0$, $H_x = \tilde{H}_x$, $E_z = \tilde{E}_z$,
$$M_{1\alpha} = M_{2\alpha} = 0$$
, $y = \pm (2f - 1)d$. (20)

С учетом (10)–(11) связь между коэффициентами отражения для падающей из среды (1) плоской объемной ЭМ волны TM-типа в случае слоя (13) и рассматриваемого типа конечного 1D МФК (V_{pN}) имеет вид (см. также [22]):

$$V_{pN} = \frac{V_p U_{N-1}(2Kd)}{U_{N-1}(2Kd) - W_p U_{N-2}(2Kd)};$$

$$U_{N-1}(x) \equiv \frac{\sin(Nx)}{\sin(x)}, \cos(2Kd) = 0.5(T_{11} + T_{22}).$$
 (21)

Прежде всего, отметим, что в такой магнитной гетероструктуре при выполнении (14) ($|V_p|=1$) становится возможным эффект сверхизлучения радиационных магнитных поляритонов, если $U_{N-1}(2Kd)=$ $=(-1)^{N-1}N$. В этом случае N-кратно усилена величина радиационного затухания, формирующейся в МФК (20)–(21) коллективной излучательной поляритонной моды, по сравнению с рассмотренным выше случаем уединенного слоя гиротропного магнетика с пространственной дисперсией. Однако гибридизации эффектов пространственной дисперсии и гиро-

тропии в магнитной среде приводит и к дополнительному механизму формирования эффекта сверхизлучения радиационных магнитных поляритонов.

Расчет показывает, что если у падающей извне плоской объемной ЭМ волны TM-типа сочетание ω и угла падения таково, что согласно (16), (18), (19) отвечает формированию "скрытых" ССК с p = 2 < n, а

$$|s_{\alpha d}| + |s_{\beta d}| = 0, \quad \eta_{\alpha, \beta}^2(\omega, h) < 0,$$

$$\alpha = 1 \div 4, \quad \beta = 1 \div 4, \quad \alpha \neq \beta,$$
(22)

то одновременно нерезонансно возбуждаемая в этом случае в слое излучательная поляритонная мода для N-периодного ΦK рассматриваемого типа (20), (21) также становится "сверхизлучательной". Это связано с тем, что, по сравнению с уединенным слоем N=1. при выполнении (21)–(22) N-кратно усилены как величина радиационного затухания, так и числитель коэффициента отражения V_{pN} для нерезонансно возбуждаемой на частоте "скрытого" ССК коллективной излучательной поляритонной моды рассматриваемого N-периодного магнитного ΦK . В результате, несмотря на выполнение (16), (18), (19) с ростом числа периодов в рассматриваемом 1D МФК N в (21) $|V_{pN}| \to 1$, если речь идет об ССК с p < n (тогда как для ССК с p = n и выполнении (16), (18), (19) в этом же пределе $|V_{pN}| = |V_p| = 0$). Эффект сверхизлучательности сохраняется и в АФМ пределе (6) для радиационной поляритонной моды, сопровождающей формирование ССК симметрийно защищенного типа.

Таким образом, в условиях гибридизации двух механизмов формирования эффекта коллапса резонансов Фано в спектре излучательных поляритонов: гиротропии и пространственной дисперсии вследствие многоволновой интерференции возможен только интерференционный тип ССК (16), (18), (19), но при p < n его реализация не сопровождается полной электромагнитной прозрачностью рассматриваемой магнитной гетероструктуры (в отличие от случая p = n, изученного в [2]) . При этом одновременно нерезонансно возбуждаемая в слое с одним открытым каналом фотонного излучения излучательная поляритонная мода становится "сверхизлучательной" если такой слой – элементарный период одномерной конечной сверхрешетки.

Некоторые частотные и угловые характеристики электромагнитной прозрачности рассматриваемой магнитной гетероструктуры, обусловленные излучательными поляритонными модами слоя можно рассмотреть более конкретно, если воспользоваться существенным различием в величинах фазовых

скоростей фотонов (c) и магнонов (s) в неограниченной магнитной среде. Для простоты и наглядности расчетов ограничимся случаем (6)-(8), т.е слоем негиротропного, оптически прозрачного магнитного диэлектрика с пространственной дисперсией. Пусть $\mathbf{q} \| OY$, $\mathbf{l}_0 \| \mathbf{b} \| OZ$, а поскольку в рассматриваемой модели магнитной среды (4)–(10) $c \gg s$, то в случае $2dk_0 \ll 1$ с хорошей степенью точности можно предположить, что граничное условие из (8) $H_x(y=\pm d)= ilde{H}_x$ выполнено по всей толщине 2d слоя $A\Phi M$ (6)–(8) в симметричном окружении (среда (1)). Для решения обменной граничной задачи можно воспользоваться подходами, развитыми в [21, 23]. В результате, усредняя уравнения Максвелла для волны TM-типа по толщине $A\Phi M$ слоя и, следуя [21, 23], получим, что для падающей на такой слой извне плоской объемной волны TM-типа входящий в (13), (21) френенелевский амплитудный коэффициент отражения V_p с учетом (8) имеет вид:

$$V_{p}(\omega, h, 2k_{0}d \ll 1) \cong -\frac{\delta_{p}}{2i\tilde{Z}_{p} + \delta_{p}},$$

$$\delta_{p} \approx \frac{2d}{\varepsilon_{\parallel}k_{0}} \times \left[\varepsilon_{\parallel}(1+\varepsilon)k_{0}^{2} - h^{2} + \sum_{\nu=1} \frac{\varepsilon\varepsilon_{\parallel}\omega^{2}k_{0}^{2}(2\kappa_{\nu}d)^{-2}}{\omega_{0}^{2} + c^{2}(h^{2} + \kappa_{\nu}^{2}) - \omega^{2}}\right].$$
(23)

Таким образом, индуцированный излучательными поляритонными модами, отклик рассматриваемой магнитной гетероструктуры на поле падающей извне плоской объемной ЭМ волны обладает резонансным характером как при угловом, так и частотном сканировании. Иными словами, в рамках сделанных приближений, полученный результат вполне коррелирует с результатами, полученными ранее, в рамках дискретной модели для системы связанных классических осцилляторов во внешнем поле, для качественного объяснения эффектов электромагнитно индуцированной прозрачности в открытых резонаторных системах с несколькими степенями свободы (см., например, [24]).

Расчет показывает, что все приведенные выше соотношения и выводы на их основе в целом остаются в силе также и для полярной МОК $(\tilde{\mathbf{c}} \| \mathbf{b} \| OY, \mathbf{q} \| \mathbf{l}_0 \| OZ)$. Если открытый канал излучения по-прежнему связан с волной TM-типа в среде (1), то в этом случае формирование как ССК интерференционного типа (16), (18), так и сопутствующих эффектов электромагнитной прозрачности становится возможным если вместо (8) на обеих поверхностях рассматриваемого однородно намагниченного слоя ЛО ФИМ (3)–(5) выполнены граничные условия вида ($\alpha = x, y$):

$$\frac{\partial M_{1\alpha}}{\partial z} = \frac{\partial M_{2\alpha}}{\partial z} = 0, \quad E_x = 0, \quad \tilde{E}_x = 0,$$

$$H_x = \tilde{H}_x, \quad E_y = \tilde{E}_y, \quad z = \pm d. \tag{24}$$

В этом случае, в соответствии с выбранной полярной МОК, в полученных выше соотношениях (9)–(19) необходимо выполнить замены $y \leftrightarrow z$ и учесть, что теперь в спектре EH-волн распространяющихся в магнитном слое (4)–(5), (22) в (19) $k_y = h, k_z = \kappa_{\nu}$. В частности, при такой замене соотношения (4)–(5), (19) будут по-прежнему определять точки вырождения в спектре объемных магнитных поляритонов EH-типа, распространяющихся вдоль слоя ЛО ФИМ (3)–(5), но теперь граничные условия на его поверхности (при $z = \pm d$) имеют вид: $E_x = 0, E_y = 0, \partial M_{1\alpha}/\partial z = \partial M_{2\alpha}/\partial z = 0 \ (\alpha = x, y)$, так как в этой МОК $\mathbf{q} \| \mathbf{l}_0 \| OZ$, $\mathbf{b} \| OY$.

Таким образом, как в полярной, так и в продольной МОК одновременный учет в гиротропной среде, также и эффектов пространственной дисперсии может приводить к более чем двулучевому отражению (преломлению) ЭМ волны на границе раздела гиротропной и негиротропной сред, а значит, и к многоволновой интерференции для бегущей вдоль гиротропного магнитного слоя объемной ЭМ волны ЕНтипа. В этом случае имеет место сосуществование в магнитном слое двух механизмов формирования "темных" состояний в спектре излучения распространяющихся радиационных магнитных поляритонов: пространственной дисперсии и гиротропии. Неполная ЭМ прозрачность слоя с одним открытым каналом излучения возникает при условии, что число парциальных волн, участвующих в формировании ССК, не совпадает с полным числом парциальных волн той же симметрии, возникающих в магнитном слое при однократном внутрислоевом отражении от его поверхности. В результате на фоне многоволновой интерференции, в точках отвечающих коллапсу резонанса Фано, для мод, участвующих в формировании ССК, деструктивная интерференция приводит к одновременному полному подавлению связи этих мод как с открытым каналом излучения, так и с остальными парциальными волнами, не участвующими в формировании "темного" состояния, но по-прежнему связанными с открытым каналом излучения. Эти оставшиеся парциальные волны и дают в условиях коллапса резонанса Фано неполное прохождение для ЭМ волны, падающей извне на оптически прозрачный слой гиротропной среды с пространственной дисперсией (соответствующее "темное" состояние (ССК) становится в результате "скрытым"). Если рассматриваемый слой оптически прозрачного гиротропного магнитного диэлектрика с пространственной дисперсией между двух идентичных анизотропно проводящих метаповерхностей является элементарным периодом конечной одномерной сверхрешетки, то в этих же условиях отмеченная радиационная мода поляритонного спектра магнитного слоя становится сверхизлучательной. Эффект сверхизлучательности может сохраняться и в точке магнитной компенсации для радиационной поляритонной моды, сопровождающей формирование ССК симметрийно защищенного типа. И в том, и в другом случае, это следствие конструктивной интерференции в открытом канале рассеяния тех фотонов, которые в условиях формирования ССК излучаются радиационными поляритонными модами каждого из магнитных слоев, образующих рассматриваемый конечный фотонный кристалл. В результате в поляритонном спектре каждого из элементарных периодов фотонного кристалла формируется "темное" состояние, однако электромагнитная прозрачность данной магнитной гетероструктуры с ростом числа этих элементарных периодов становится практически нулевой.

Финансирование работы. Исследование роли гибридизации эффектов пространственной дисперсии и гиротропии на электромагнитную прозрачность слоя с одним открытым каналом фотонного рассеяния выполнено при поддержке Минобрнауки РФ за счет государственного задания ФГБНУ "Донецкий физико-технический институт им. А. А. Галкина" бюджетная тема. Исследование на примере конечной одномерной сверхрешетки возможности существования в этих условиях случае дополнительных механизмов формирования сверхизлучательных мод выполнено при поддержке РНФ, грант номер 20-19-00745-П.

Конфликт интересов. Авторы декларируют отсутствие конфликта интересов при выполнении данной работы.

S. Maekawa, T. Kikkawa, H. Chudo, J. Ieda, and E. Saitoh, JAP 133, 020902 (2023).

^{2.} Ч. С. Ким, А. М. Сатанин, Ю. С. Джо, Р. М. Косби, ЖЭТФ **116**, 263 (1999).

^{3.} К. Л. Кошелев, З. Ф. Садриева, А. А. Щербаков, Ю. С. Кившарь, А. А. Богданов, УФН **193**, 528 (2023).

J. Gomis-Bresco, D. Artigas, and L. Torner, Nature Photon. 11, 232 (2017).

T. Ma, Q. Huang, H. He, Y. Zhao, X. Lin, and Y. Lu, Opt. Express 27, 16624 (2019).

- B. Flebus, S. M. Rezende, D. Grundler, and A. Barman, J. Appl. Phys. 133, 160401 (2023).
- V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).
- 8. B. A. Ivanov, Low Temp. Phys. 45, 935 (2019).
- 9. В.В. Шевченко, Плавные переходы в открытых волноводах. Введение в теорию, Наука, М. (1969).
- 10. Г.Смоленский, В. Леманов, Ферриты и их техническое применение, Наука, Л. (1975).
- С. В. Тарасенко, В. Г. Шавров, Письма в ЖЭТФ 111, 345 (2020).
- H. Friedrich and D. Wintgen, Phys. Rev. A 32, 3231 (1985).
- 13. S.I. Azzam and A.V. Kildishev, Adv. Opt. Mater. **9**, 2001469 (2021).
- 14. В. М. Агранович, В. Л. Гинзбург, *Кристаллооптика* с учетом пространственной дисперсии и теория экситонов, Наука, М. (1965).

- 15. D. O. Ignatyeva and V. I. Belotelov, Opt. Lett. **45**, 6422 (2020).
- 16. M. Rybin and Y. Kivshar, Nature **541**, 164 (2017).
- 17. Н. М. Шубин, В. В. Капаев, А. А. Горбацевич, Письма в ЖЭТФ **116**, 204 (2022).
- 18. В.И. Альшиц, В.Н. Любимов, А. Радович, ЖЭТФ **131**, 14 (2007).
- 19. Л. Г. Нарышкина, М. Е. Герценштейн, Изв. вузов. Радиофизика ${f 10},\ 91\ (1967).$
- 20. Л. М. Бреховских, Волны в слоистых средах, Изд-во АН СССР, М. (1957).
- 21. А.Г. Гуревич, Магнитный резонанс в ферритах и антиферромагнетиках, Наука, М. (1973).
- А. Ярив, П. Юх, Оптические волны в кристаллах, Мир, М. (1987).
- 23. Б. А. Калиникос, Изв. ВУЗов. Сер. Физика **24**, 42 (1981).
- Z. Xu, Y. Wang, S. Liu, J. Ma, S. Fang, and H. Wu, IEEE Sens. J. 23, 6378 (2023).